

Environmental Department 333 W. Everett St. Milwaukee, WI 53203

January 31, 2023

Ms. Sally Hronek Wisconsin Department of Natural Resources 1300 West Clairemont Avenue Eau Claire, WI 54701-6127

submitted via email

RE: WISCONSIN PUBLIC SERVICE WESTON DISPOSAL SITE #3 ASH LANDFILL LICENSE #2879 - FID# 737062150

NR 506.20(3) 2022 ANNUAL CCR REPORT

Dear Ms. Hronek:

This report is submitted as required per NR 506.20(3) and will be placed in the facility operating record. The report consists of the following attachments:

- 2022 fugitive dust control report [per NR 506.20(3)(a)]
- 2022 inspection report [per NR 506.20(3)(b)]
- 2022 groundwater monitoring and corrective action report [per NR 506.20(3)(c)]
- 2022 leachate pipe cleaning and inspection report [per NR 506.20(3)(d)]

Copies of the annual fugitive dust and inspection reports (listed above) are already available online at https://www.we-energies.com/environment/coal-combustion (the company website). A copy of the annual groundwater monitoring and corrective action report will be placed on the company website in early March 2023.

Please contact me at 414.221-2457 or eric.kovatch@wecenergygroup.com should you have any questions.

Sincerely,

Eric P. Kovatch

Facility Manager – Senior Environmental Consultant

cc: Aaron Kent (WDNR)

Attachments: Appendices A through D (reports listed above)

[File:\2023-01-31 WDS3 NR506 Annual Report for WDNR]

APPENDIX A

2022 FUGITIVE DUST CONTROL REPORT [PER NR 506.20(3)(A)]

1.0 INTRODUCTION

This annual fugitive dust control report has been prepared to meet the requirements of 40 CFR 257.80(c).

Weston Disposal Site #3 currently consists of two cells. Cell 2 began active operations during the 2nd Quarter of 2016. Cell 1 was opened during the 3rd quarter of 2021 and began receiving CCR. A final cover of approximately 2-1/2 acres was installed over a portion of Cell 2 in 2016.

2.0 FUGITIVE DUST CONTROL MEASURES

Fugitive dust control measures are described in Section 2.0 of the Fugitive Dust Control Plan, Weston Disposal Site #3, dated October 13, 2015. Effectiveness of the Fugitive Dust Control Plan is evaluated during the weekly and annual inspections. A review of the weekly and annual inspections contained in the operating record was completed during the preparation of this annual fugitive dust control report and confirms that the fugitive dust control measures implemented at Weston Disposal Site #3 are effective.

3.0 CITIZEN COMPLAINTS

The procedure for logging citizen complaints is described in Section 3.0 of the Fugitive Dust Control Plan, Weston Disposal Site #3, dated October 13, 2015. There were no citizen complaints associated with Weston Disposal Site #3 that were logged during the period covered by this annual report.

APPENDIX B

2022 INSPECTION REPORT [PER NR 506.20(3)(B)]

Consulting
Engineers and
Scientists

December 19, 2022 Project 2103691

Mr. Eric Kovatch
WEC Energy Group – Business Services
333 West Everett Street, A231
Milwaukee, Wisconsin 53203

Re: 2022 Landfill Inspection Report for the Weston Disposal Site No. 3 Wisconsin Public Service Corporation Town of Knowlton, Marathon County, Wisconsin

Dear Mr. Kovatch:

GEI Consultants, Inc. (GEI) is pleased to provide this landfill inspection report for the Wisconsin Public Service Corporation (WPS) Weston Disposal Site No. 3 (WDS3). The inspection was completed to comply with 40 CFR 257 Subpart D – Standards for the Disposal of Coal Combustion Residuals (CCR) in Landfills and Surface Impoundments and specifically with § 257.84(b) Annual inspections by a qualified professional engineer.

§ 257.84 Inspection Requirements for CCR Landfills

- (b) Annual inspections by a qualified professional engineer.
 - (1) Existing and new CCR landfills and any lateral expansion of a CCR landfill must be inspected on a periodic basis by a qualified professional engineer to ensure that the design, construction, operation, and maintenance of the CCR unit is consistent with recognized and generally accepted good engineering standards. The inspection must, at a minimum, include:
 - (i) A review of available information regarding the status and condition of the CCR unit, including, but not limited to, files available in the operating record (e.g., the results of inspections by a qualified person and results of previous annual inspections); and
 - (ii) A visual inspection of the CCR unit to identify signs of distress or malfunction of the CCR unit.
 - (2) *Inspection report*. The qualified professional engineer must prepare a report following each inspection that addresses the following:
 - (i) Any changes in geometry of the structure since the previous annual inspection;
 - (ii) The approximate volume of CCR contained in the unit at the time of the inspection;
 - (iii) Any appearances of an actual or potential structural weakness of the CCR unit, in addition to any existing conditions that are disrupting or have the potential to disrupt the operation and safety of the CCR unit; and
 - (iv) Any other change(s) which may have affected the stability or operation of the CCR unit since the previous annual inspection.

Background

The landfill, located in the E 1/2 of the NW 1/4 and W 1/2 of the NE 1/4, Section 23, Township 26 North, Range 7 East, Town of Knowlton, Marathon County, Wisconsin, is permitted by the Wisconsin Department of Natural Resources (WDNR) under License No. 3067. Figure 1 - Site Location Figure, shows the location of the landfill relative to the Weston Power Plant. The landfill was permitted by the WDNR on December 11, 2014, with the issuance of a Conditional Plan of Operation Approval. The facility is licensed and approved as a 57.6-acre, 4,075,500 cubic yard (cy) landfill. Cells 1 and 2 have a constructed area of 15.1 acres and an operational capacity of 667,900 cy. Both cells were constructed 2015 along with the installation of a leachate force main, storage tank, and load-out system. The construction of Cells 1 and 2 was approved by WDNR on April 22, 2016. WPS placed Cell 2 into service on June 27, 2016 and Cell 1 on August 16, 2021. WPS has filled the cells episodically since being placed into service and has constructed permanent final cover over approximately 3.5 acres of the Cell 2 exterior slopes after reaching final waste grades.

GEI was retained to perform an annual inspection of the landfill in compliance with § 257.84(b) Annual inspections by a qualified professional engineer. The inspection was performed on November 22, 2022. Copies of the site location figure and landfill inspection photo log are appended to this letter-report and constitute the entirety of the report.

Site Inspection

The landfill site inspection was performed by Mr. William Butler, P.E. on November 22, 2022. The inspection included observation of Cells 1 and 2, observation and inspection of the Cell 2 partial final cover and perimeter slopes, and storm water management features for the site. Photographs taken during the site inspection are attached to this report. The following are the observed conditions as of the date of the annual inspection:

- (i) Cell 1 was placed into service on August 26, 2021, with the placement of the frost protection layer. As of November 22, 2022, approximately 57,200 cy of CCR have been disposed of in Cell 1. CCR placement consists of the 4-foot frost protection layer on the floor of the cell.
- (ii) Cell 2 was placed into service on June 27, 2016. As of December 10, 2021, approximately 389,000 cy of CCR have been disposed of in Cell 2. CCR placement consists of the 4-foot frost protection layer on the floor of the cell and CCR placed to final waste grades. Permanent final cover has been constructed over approximately 3.5 acres of the perimeter slopes of Cell 2 in 2016 and 2020; the remainder of the cell has CCR placed in accordance with the waste filling and storm water management plans.
- (iii) The perimeter slopes of Cells 1 and 2, and the final cover slopes of Cell 2 appear to be in excellent condition with no signs of instability, structural weakness, significant erosion, woody vegetation, or animal burrows.

Conclusion

On November 22, 2022, a GEI licensed professional engineer completed an annual inspection of the WPS Weston Disposal Site No. 3 in compliance with § 257.84(b) Annual inspections by a qualified professional engineer. Cell 2 of the landfill is operational and at the time of the inspection had not received any additional CCR, however in early December 2022 the landfill

operator placed approximately 34,000 cy of CCR. Cell 1 is operational and did not receive any CCR during 2022. The perimeter slopes of Cell 2 appear to be in good condition with no significant erosion, no woody vegetation, no animal burrows, and no areas of instability or structural weakness. At the time of the inspection the permanent final cover constructed is in excellent condition. The vegetation is well established with no erosion, no woody vegetation, no animal burrows, and no areas of instability or structural weakness.

The inspection was completed by William Butler, P.E. I am a licensed professional engineer in the State of Wisconsin in accordance with the requirements of Chapter A-E 4, Wisconsin Administrative Code; that this document has been prepared in accordance with the Rules of Professional Conduct in Chapter A-E 8, Wisconsin Administrative Code; and that, to the best of my knowledge, all information contained in this document is correct and the document was prepared in compliance with all applicable requirements in Chapters NR 500 to 538, Wisconsin Administrative Code and 40 CFR 257.

If you have any questions regarding this report, please contact me at 920-455-8299.

Sincerely,

GEI CONSULTANTS, INC.

William Butler, P.E.

Senior Geotechnical Engineer

John M. Trast, P.E., D.GE

Vice President

Attachments:

Figure 1 - Site Location Figure WPS3 Ash Landfill CCR Compliance – Annual Inspection Landfill Inspection Photo Log

LWB:jxt

K:\WEC Energy Group\2103691_WEC Active CCR Landfills Engineering Assistance\05_In_Progress\WDS3\2022 Inspection\R2103691 WPS_WDS3 2021 CCR Landfill Inspection Rpt_12-19-2022.docx

WISCONSIN PUBLIC SERVICE TOWN OF KNOWLTON, WISCONSIN

WESTON DISPOSAL SITE NO. 3 SITE LOCATION FIGURE

Project 1803049 December 5, 2018

J:\Landfills\WPS_Legner\Dust Control\dwg\fig1

Form Date: 11/24/2015

WDS3 ASH	LANDFILL CCR	COMPLIANCE -	ANNUAL	INSPECTION
	Marie Bal BE			
	William Butler, PE			
INSPECTION DATE/TIME:	11/22/2022			
WEATHER:	05° 5			
Temperature:	35° F			
Conditions:	Sunny			
Wind:	Mild			
Wind Direction:	W			
Precipitation:	Lt. Snow	during the night		
LEACHATE COLLECTION SYS				
Load-out Facility:		Sump:		
High level alarms:	No	Cell 1 Pump #1	Available	28.7 in Primary LCS Sump
Low level alarms:	No	Cell 1 Pump #2	Available	29.2 in Primary LCS Sump
Leak alarms	No	Control Panel:	Available	
Tank Level :	6.0 ft	Cell 2 Pump #1	Available	21.3 in Primary LCS Sump
Tank Volume:	22350 gallons	Cell 2 Pump #2	Available	24.0 in Primary LCS Sump
Pump:	Available	Control Panel:	Available	
Pad Condition:	Good			
	keep the volume les Leachate levels in t	ss than 30,000 gallo he sumps are being	ons (operatir maintained	certified operators to generally ng capacity is 104,800 gallons). If in compliance with the operating of head on the liner.
STABILITY/EROSION OF FINAL	COVERS & WAST	TE SLOPES:		
Final Covers:				
Waste Slopes:				
•	The Cell 2 final coverage			observed instability, no significant or concerns regarding the final
				condition with no observed
	instability or signific		J	
Note:	Check mark indic:	ates sione annears	stable and	I no significant erosion.
LANDFILL OPERATIONS:	Greek mark male	ites stope appears	Stable and	The digitificant crodicin.
Fugitive Dust Control:		Stormwater Manag	gement	
Tracking Pads :	V	Exterior Ditches:		
Cattle Guards :		Interior Ditches:		
	▽	Catch Basin:	_	
				
Landfill Surfaces Vegetated:	NI-	Culverts:	<u> </u>	
Airbourne Dust Visible:	No			
Sign of Recent Dust Deposition:	No Call 2 partial alcourse	occurred in 2016 Sou	uthoost sorns	or and 2020 East along of the landfill
	The remain uncovere the landfill and placed	d area over Cell 2 wa I the 4 feet frost prote	s covered in ction layer. L	er and 2020 East slope of the landfill. 2022. In 2021 WEC opened Cell 1 of Leachate from Cells 1 and 2 is hauled Power Plan for disposal.
Note:	Check mark indica	ates that the featur	es are acce	eptable.

Project: WDS3 Landfill Inspection
Client: WEC Energy Group

WEC Energy Group GEI Proj. No.: 2103691

PHOTOGRAPH NO: 1	DATE:	LATITUDE:	LONGITUDE:
PHOTOGRAPH NO. 1	November 22, 2022	44.7270139551537	-89.6428701756124

SITE LOCATION: WESTON, WISCONSIN

DESCRIPTION:

Leachate collection tank and loadout facility.

рното ву:

BILL BUTLER

PHOTOGRAPH NO: 2	DATE:	LATITUDE:	LONGITUDE:
	November 22, 2022	44.7260192449485	-89.6371589722821

SITE LOCATION: WESTON, WISCONSIN

DESCRIPTION:

Storm water basin no.1 pond, taken on the north landfill berm, looking east.

рното ву:

Project: WDS3 Landfill Inspection
Client: WEC Energy Group

GEI Proj. No.: 2103691

November 22, 2022 44.7259887084943 -89.6372823467994	Duozoca Apu No.	DATE:	LATITUDE:	LONGITUDE:
	PHOTOGRAPH NO:	November 22, 2022	44.7259887084943	-89.6372823467994

Delete photo from log SITE LOCATION: WESTON, WISCONSIN

DESCRIPTION:

Photo shows the extent of the placement of the 4-feet frost protection layer in cell 1. Photo taken north landfill berm, looking south.

рното ву:

BILL BUTLER

PHOTOGRAPH NO: 3	DATE:	LATITUDE:	LONGITUDE:	
	November 22, 2022	44.7253545694234	-89.6357830654781	

SITE LOCATION: WESTON, WISCONSIN

DESCRIPTION:

In the foreground, shown is the extent of placement of the 4-feet frost protection layer in cell 1. In the background, is the north slope of cell 2. The photo was taken looking south.

РНОТО ВҮ:

Project: WDS3 Landfill Inspection

Client: WEC Energy Group GEI Proj. No.: 2103691

PHOTOGRAPH NO: 4	DATE:	LATITUDE:	LONGITUDE:
PHOTOGRAPH NO: 4	November 22, 2022	44.7251201077746	-89.6352223288036

SITE LOCATION: WESTON, WISCONSIN

DESCRIPTION:

Construction equipment parked on the surface of the cell 1 frost protection layer.

рното ву:

BILL BUTLER

	D	DATE:	LATITUDE:	LONGITUDE:
PHOTOGRAPH NO: 5	November 22, 2022	44.7250807341376	-89.6349439647108	

SITE LOCATION: WESTON, WISCONSIN

DESCRIPTION:

Leachate collection system control panel for cell _____. Panel located on east landfill berm.

рното ву:

Project: WDS3 Landfill Inspection
Client: WEC Energy Group

GEI Proj. No.: 2103691

PHOTOGRAPH NO: 6	DATE:	LATITUDE:	LONGITUDE:
PHOTOGRAPH NO. 6	November 22, 2022	44.7248623525963	-89.6349188504667

SITE LOCATION: WESTON, WISCONSIN

DESCRIPTION:

Stormwater basin no. 2 Photo taken from the east landfill berm looking south.

рното ву:

BILL BUTLER

PHOTOGRAPH NO:	DATE: November 22, 2022	Latitude: 44.7248439323228	Longitude: -89.6349470482454
Delete photo from log	SITE LOCATION: WESTON, WISCONSIN		

DESCRIPTION:

Cell 2 leachate collection control panel east side of cell 2

рното ву:

Project: WDS3 Landfill Inspection
Client: WEC Energy Group

GEI Proj. No.: 2103691

Рнотодгарн No:	DATE:	LATITUDE:	LONGITUDE:
	November 22, 2022	44.7250215430788	-89.6366688757954

Delete photo from log

SITE LOCATION: WESTON, WISCONSIN

DESCRIPTION:

Looking south at the west slope cell 2

рното ву:

BILL BUTLER

PHOTOGRAPH NO: 7	DATE:	LATITUDE:	LONGITUDE:
PHOTOGRAPH NO. 7	November 22, 2022	44.7249492376885	-89.6366926640687

SITE LOCATION: WESTON, WISCONSIN

DESCRIPTION:

Shown is the north slope of cell 2. The cover was placed in 2022.

рното ву:

Project: WDS3 Landfill Inspection
Client: WEC Energy Group

GEI Proj. No.: 2103691

PHOTOGRAPH NO: 8	DATE:	LATITUDE:	LONGITUDE:
PHOTOGRAPH NO. 8	November 22, 2022	44.7249580390356	-89.6386231576116

SITE LOCATION: WESTON, WISCONSIN

DESCRIPTION:

Looking east at the west slope for cell 2.

рното ву:

BILL BUTLER

PHOTOGRAPH NO:	DATE:	LATITUDE:	LONGITUDE:	
	November 22, 2022	44.7232181095683	-89.6358991341884	
Delete photo from log	SITE LOCATION: WESTON, WISCONSIN			

DESCRIPTION:

Future expansion area, taken from cell 2 crest looking west

РНОТО ВУ:

Project: WDS3 Landfill Inspection
Client: WEC Energy Group

GEI Proj. No.: 2103691

PHOTOGRAPH NO: 9	DATE:	LATITUDE:	LONGITUDE:	
PHOTOGRAPH NO. 9	November 22, 2022	44.7232676463016	-89.6357964522053	

SITE LOCATION: WESTON, WISCONSIN

DESCRIPTION:

Taken from the south edge of cell 2, looking north at the final cover crest.

рното ву:

BILL BUTLER

Dueza an anu Nav 10	DATE:	LATITUDE:	LONGITUDE:	
PHOTOGRAPH NO: 10	November 22, 2022	44.7228513038638	-89.6349624394725	
		<u> </u>	·	

SITE LOCATION: WESTON, WISCONSIN

DESCRIPTION:

Looking at the east slope and storm water control ditch for cell 2. Photo taken at the southeast corner of cell 2.

рното ву:

Project: WDS3 Landfill Inspection
Client: WEC Energy Group

GEI Proj. No.: 2103691

Buotoch spu No.	DATE:	LATITUDE:	LONGITUDE:	
PHOTOGRAPH NO:	November 22, 2022	44.7226215336951	-89.6361149704177	

Delete photo from log SITE LOCATION: WESTON, WISCONSIN

DESCRIPTION:

Cell 2 perimeter leachate collection vault and clean out southwest corner

рното ву:

BILL BUTLER

Dueza an anu Nav 11	DATE:	LATITUDE:	LONGITUDE:	
PHOTOGRAPH NO: 11	November 22, 2022	44.7226219222856	-89.6367295015781	

SITE LOCATION: WESTON, WISCONSIN

DESCRIPTION:

Looking east at the cell 2 south slope. Photo taken at the southwest corner of cell 2.

рното ву:

APPENDIX C

2022 GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT [PER NR 506.20(3)(C)]

Prepared for

Wisconsin Public Service Corporation

Date

January 31, 2023

Project No.

1940102327

2022 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT

WESTON DISPOSAL SITE NO. 3 LANDFILL

2022 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT WESTON DISPOSAL SITE NO. 3 LANDFILL

Project name Weston Disposal Site No. 3 Landfill

Project no. **1940102327**

Recipient Wisconsin Public Service Corporation

Document type Annual Groundwater Monitoring and Corrective Action Report

Revision FINAL

Date January 31, 2023
Prepared by Andrew F. Hardwick
Checked by Eric J. Tlachac, PE
Approved by Nathaniel R. Keller, PG

Ramboll

234 W. Florida Street

Fifth Floor

Milwaukee, WI 53204

USA

T 414-837-3607 F 414-837-3608 https://ramboll.com

Andrew F. Hardwick Geologist

Nathaniel R. Keller, PG Senior Hydrogeologist

Eric J. Tlachac, PE Senior Managing Engineer

CONTENTS

EXECU	ITIVE SUMMARY	3
1.	Introduction	4
2.	Monitoring and Corrective Action Program Status	6
3.	Key Actions Completed in 2022	7
4.	Problems Encountered and Actions to Resolve the Problems	9
5.	Key Activities Planned for 2023	10
6.	References	11

TABLES (IN TEXT)

Table A 2021-2022 Detection Monitoring Program Summary

TABLES (ATTACHED)

Table 1 Groundwater Elevations

Table 2 Analytical Results - Appendix III Parameters

Table 3 Statistical Background Values

FIGURES (ATTACHED)

Figure 1 Monitoring Well Location Map

Figure 2 Potentiometric Surface Map, October 26, 2021
Figure 3 Potentiometric Surface Map, April 12, 2022
Figure 4 Potentiometric Surface Map, October 25, 2022

APPENDICES

Appendix A Laboratory Reports

Appendix B Statistical Methodology for Determination of Background Values

ACRONYMS AND ABBREVIATIONS

§ Section

40 C.F.R. Title 40 of the Code of Federal Regulations

ASD Alternate Source Demonstration

Ca calcium

CCR Coal Combustion Residuals

Cl chloride

GMP Groundwater Monitoring Plan
GWPS groundwater protection standard

mg/L milligrams per liter NA not applicable

No. number

NRT/OBG Natural Resource Technology, an OBG Company Ramboll Ramboll Americas Engineering Solutions, Inc.

SAP Sampling and Analysis Plan

SO₄ sulfate

SSI statistically significant increase

TBD to be determined TDS total dissolved solids

WDS3 Weston Disposal Site No. 3 Landfill

EXECUTIVE SUMMARY

This report has been prepared to provide the information required by Title 40 of the Code of Federal Regulations (40 C.F.R.) Section (§) 257.90(e) for the Weston Disposal Site Number (No.) 3 (WDS3) Landfill located in the Town of Knowlton, Wisconsin.

Groundwater is being monitored at the WDS3 Landfill in accordance with the detection monitoring program requirements specified in 40 C.F.R. § 257.94.

No changes were made to the monitoring system in 2022 (no wells were installed or decommissioned).

In 2022, groundwater analytical data was evaluated for statistically significant increases (SSIs) over background concentrations for Appendix III constituents in groundwater monitoring wells at the WDS3 Landfill. The following constituents and wells had SSIs reported in 2022:

- Calcium (Ca) LS-100, LS-105, and LS-107
- Chloride (Cl) LS-107
- Sulfate (SO₄) LS-100, LS-105, and LS-107
- Total Dissolved Solids (TDS) LS-105 and LS-107

Alternate Source Demonstrations (ASDs) prepared in prior years for these parameters and monitoring locations provide justification that the SSIs observed during the Detection Monitoring Program were not due to a release from the CCR unit but were either from naturally occurring conditions (e.g., natural variation in groundwater quality), a result of statistical procedures used to evaluate the results, or potential anthropogenic impacts in the area surrounding the WDS3 Landfill.

The WDS3 Landfill remains in the detection monitoring program in accordance with 40 C.F.R. § 257.94.

1. INTRODUCTION

This report has been prepared by Ramboll Americas Engineering Solutions, Inc. (Ramboll) on behalf of Wisconsin Public Service Corporation, to provide the information required by 40 C.F.R. § 257.90(e) for the Weston Disposal Site No. 3 (WDS3) Landfill located in the Town of Knowlton, Wisconsin.

In accordance with 40 C.F.R. § 257.90(e), the owner or operator of a coal combustion residuals (CCR) unit must prepare an Annual Groundwater Monitoring and Corrective Action Report for the preceding calendar year that documents the status of the Groundwater Monitoring and Corrective Action Program for the CCR unit, summarizes key actions completed, describes any problems encountered, discusses actions to resolve the problems, and projects key activities for the upcoming year. At a minimum, the annual report must contain the following information, to the extent available:

- 1. A map, aerial image, or diagram showing the CCR unit and all background (or upgradient) and downgradient monitoring wells, to include the well identification numbers, that are part of the groundwater monitoring program for the CCR unit.
- 2. Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a narrative description of why those actions were taken.
- 3. In addition to all the monitoring data obtained under §§ 257.90 through 257.98, a summary including the number of groundwater samples that were collected for analysis for each background and downgradient well, the dates the samples were collected, and whether the sample was required by the detection monitoring or assessment monitoring programs.
- 4. A narrative discussion of any transition between monitoring programs (e.g., the date and circumstances for transitioning from detection monitoring to assessment monitoring in addition to identifying the constituent(s) detected at an SSI relative to background levels).
- 5. Other information required to be included in the annual report as specified in §§ 257.90 through 257.98.
- 6. A section at the beginning of the annual report that provides an overview of the current status of groundwater monitoring and corrective action programs for the CCR unit. At a minimum, the summary must specify all of the following:
 - i. At the start of the current annual reporting period, whether the CCR unit was operating under the detection monitoring program in § 257.94 or the assessment monitoring program in § 257.95.
 - ii. At the end of the current annual reporting period, whether the CCR unit was operating under the detection monitoring program in § 257.94 or the assessment monitoring program in § 257.95.
 - iii. If it was determined that there was an SSI over background for one or more constituents listed in Appendix III of § 257 pursuant to § 257.94(e):
 - A. Identify those constituents listed in Appendix III of § 257 and the names of the monitoring wells associated with such an increase.
 - B. Provide the date when the assessment monitoring program was initiated for the CCR unit.

- iv. If it was determined that there was a statistically significant level above the groundwater protection standard [GWPS] for one or more constituents listed in Appendix IV of § 257 pursuant to § 257.95(g) include all of the following:
 - A. Identify those constituents listed in Appendix IV of § 257 and the names of the monitoring wells associated with such an increase.
 - B. Provide the date when the assessment of corrective measures was initiated for the CCR unit.
 - C. Provide the date when the public meeting was held for the assessment of corrective measures for the CCR unit.
 - D. Provide the date when the assessment of corrective measures was completed for the CCR unit.
- v. Whether a remedy was selected pursuant to § 257.97 during the current annual reporting period, and if so, the date of remedy selection.
- vi. Whether remedial activities were initiated or are ongoing pursuant to § 257.98 during the current annual reporting period.

This report provides the required information for the WDS3 Landfill for calendar year 2022.

2. MONITORING AND CORRECTIVE ACTION PROGRAM STATUS

No changes have occurred to the monitoring program status in calendar year 2022 and the WDS3 Landfill remains in the detection monitoring program in accordance with 40 C.F.R. § 257.94.

3. KEY ACTIONS COMPLETED IN 2022

The detection monitoring program is summarized in **Table A** on the following page. The groundwater monitoring system, including the CCR unit and all background (upgradient) and downgradient monitoring wells, is presented in **Figure 1**. No changes were made to the monitoring system in 2022. In general, one groundwater sample was collected from each background and compliance well during each monitoring event. All samples were collected and analyzed in accordance with the *Sampling and Analysis Plan, Weston Disposal Site No. 3 Landfill* (Natural Resource Technology, an OBG Company [NRT/OBG], 2017). Potentiometric surface maps for the fourth quarter of 2021 and both monitoring events in 2022 are included in **Figures 2 through 4**. Water level data, collected from background and downgradient monitoring wells, are included in **Table 1**. All monitoring data and analytical results obtained under 40 C.F.R. §§ 257.90 through 257.98 (as applicable) in the fourth quarter of 2021 and both monitoring events in 2022 are presented in **Table 2**. Laboratory reports for the fourth quarter of 2021 and both 2022 monitoring events are included in **Appendix A**.

Analytical data were evaluated in accordance with the *Statistical Analysis Plan, Weston Disposal Site No. 3 Landfill* (NRT/OBG, 2017) to determine any SSIs for Appendix III parameters relative to background concentrations. Statistical background values are provided in **Table 3**. A flow chart showing the statistical methodology for determining background values is included as **Appendix B**.

Statistical evaluation of analytical data, including SSI determinations, from the Detection Monitoring Program for October 26, 2021 (Detection Monitoring Round 9) and April 12, 2022 (Detection Monitoring Round 10) were completed in 2022 and within 90 days of receipt of the analytical data. SSIs over background concentrations for Appendix III constituents were identified during data evaluations of Round 9 and Round 10 groundwater sampling analytical data. Additional information regarding SSI parameters and well locations is provided in **Table A**.

The ASDs dated April 15, 2018 and July 7, 2021 for the Weston Disposal Site No. 3 Landfill provided a description, data, and pertinent information supporting an alternate source for the wells and parameters with SSIs in Detection Monitoring Rounds 9-10. Data resulting in SSIs above background are consistent with analytical results observed in previous detection monitoring rounds. As a result, no ASDs were prepared in 2022.

Table A. 2021-2022 Detection Monitoring Program Summary

Detection Round	Sampling Date	Analytical Data Receipt Date	Parameters Collected	SSI Wells (Parameters)	SSI(s) Determination Date	ASD Completion Date ¹
9	October 26, 2021	December 2, 2021	Appendix III	LS-100 (Ca, SO ₄)	March 2, 2022	April 15, 2018
				LS-105 (Ca, SO ₄ , TDS)		July 7, 2021
				LS-107 (Ca, Cl, SO ₄ , TDS)		
10	April 12, 2022	May 5, 2022	Appendix III	LS-100 (Ca, SO ₄)	August 3, 2022	April 15, 2018
				LS-105 (Ca, SO ₄ , TDS)		July 7, 2021
				LS-107 (Ca, Cl, SO ₄ , TDS)		
11	October 25, 2022	December 5, 2022	Appendix III	TBD	TBD	TBD
					Before March 5, 2023	

Notes:

NA: Not applicable

TBD: To Be Determined

WDS3 2022 Annual GW Report FINAL.docx 8/11

¹ The April 15, 2018 and July 7, 2021 ASD for Weston Disposal Site No. 3 provided a description, data, and pertinent information supporting an alternate source for the wells and parameters with SSIs in Detection Monitoring Rounds 9-10. Data resulting in SSIs above background are consistent with analytical results observed in previous detections monitoring rounds.

4. PROBLEMS ENCOUNTERED AND ACTIONS TO RESOLVE THE PROBLEMS

No problems were encountered with the Groundwater Monitoring Program during 2022. Groundwater samples were collected and analyzed in accordance with the SAP and all data were accepted.

5. KEY ACTIVITIES PLANNED FOR 2023

The following key activities are planned for 2023:

- Continuation of the detection monitoring program with semi-annual sampling scheduled for the second and fourth quarters of 2023.
- Complete evaluation of analytical data from the compliance wells using background data to determine whether an SSI of Appendix III parameters detected at concentrations greater than background concentrations has occurred.
- If an SSI is identified, potential alternate sources (*i.e.*, a source other than the CCR unit caused the SSI or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality) will be evaluated.
 - If an alternate source is identified to be the cause of the SSI, a written demonstration will be completed within 90 days of SSI determination and included in the 2023 Annual Groundwater Monitoring and Corrective Action Report.
 - If an alternate source(s) is not identified to be the cause of the SSI, the applicable requirements of 40 C.F.R. §§ 257.94 through 257.98 as may apply in 2023 (e.g., assessment monitoring) will be met, including associated recordkeeping/notifications required by 40 C.F.R. §§ 257.105 through 257.108.

6. REFERENCES

Natural Resource Technology, an OBG Company (NRT/OBG), 2017. Sampling and Analysis Plan, Weston Disposal Site No. 3 Landfill, Town of Knowlton, Wisconsin, October 3, 2017.

Natural Resource Technology, an OBG Company (NRT/OBG), 2017. Statistical Analysis Plan, Weston Disposal Site No. 3 Landfill, Town of Knowlton, Wisconsin, October 17, 2017.

TABLES

TABLE 1 **GROUNDWATER ELEVATIONS**

2022 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT WESTON DISPOSAL SITE NO. 3 LANDFILL

TOWN OF KNOWLTON, WI

Well ID	Well Type	Latitude (Decimal Degrees)	Longitude (Decimal Degrees)	Date	Groundwater Elevation (ft NAVD88)
				10/26/2021	1191.07
LS-101	Background (Upgradient)	44.72648	-89.63627	04/12/2022	1196.87
	(0 p g. a a. a)			10/25/2022	1191.83
				10/26/2021	1189.24
LS-100	Compliance (Downgradient)	44.72484	-89.63437	04/12/2022	1192.25
	(2011.19.00.00)			10/25/2022	1187.72
		44.72295	-89.63439	10/26/2021	1185.10
LS-105	Compliance (Downgradient)			04/12/2022	1186.37
				10/25/2022	1184.30
	Compliance (Downgradient)	44.72219	-89.63533	10/26/2021	1180.99
LS-106				04/12/2022	1181.12
				10/25/2022	1181.62
				10/26/2021	1188.32
LS-107	Compliance (Downgradient)	44.72630	-89.63852	04/12/2022	1188.79
	(= 2 g. a a. a)			10/25/2022	1188.62
				10/26/2021	1189.54
LS-52	Water Level Only	NA	NA	04/12/2022	1191.17
				10/25/2022	1189.14

Notes:

ft = foot/feet NAVD88 = North American Vertical Datum of 1988

Weston Disposal Site #3 CCR Table 2. Analytical Results - Appendix III Parameters

Date Range: 10/01/2021 to 12/31/2022

Lab Methods:

Well Id	Date Sampled	Lab Id	B, tot, mg/L	Ca, tot, mg/L	CI, tot, mg/L	F, tot, mg/L	pH (field), STD	SO4, tot, mg/L
LS-100	10/26/2021	AE56950	0.0352	15.700	1.600	<0.095	5.6	21.100
	4/12/2022	AE60080	0.0205	17.000	1.700	<0.095	5.6	36.500
	10/25/2022	AE63596	0.0204	17.100	2.300	<0.095	5.1	15.800
LS-101	10/26/2021	AE56951	<0.0173	5.420	2.500	<0.095	5.7	2.600
	4/12/2022	AE60081	0.0092	2.700	0.590	<0.095	5.7	2.100
	10/25/2022	AE63597	<0.0173	6.300	0.490	<0.095	5.4	2.700
LS-105	10/26/2021	AE56952	0.0396	23.100	2.100	<0.095	5.9	25.200
	4/12/2022	AE60082	0.0241	22.000	1.900	<0.095	5.9	20.900
	10/25/2022	AE63598	0.0411	23.200	1.800	<0.095	5.6	25.300
LS-106	10/26/2021	AE56953	0.0226	12.500	2.400	<0.095	5.9	4.800
	4/12/2022	AE60083	0.0370	4.240	0.990	<0.095	5.7	2.100
	10/25/2022	AE63599	0.0242	17.000	2.500	<0.095	5.6	2.200
LS-107	10/26/2021	AE56954	0.0224	26.400	5.700	<0.095	5.7	42.000
	4/12/2022	AE60084	0.0215	24.600	5.100	<0.095	5.6	42.000
	10/25/2022	AE63600	0.0312	36.200	10.400	<0.095	5.3	89.100

Notes:

Exceedance of Background

Weston Disposal Site #3 CCR Table 2. Analytical Results - Appendix III Parameters

Date Range: 10/01/2021 to 12/31/2022

Lab Methods:

Well Id	Date Sampled	Lab Id	TDS, mg/L
LS-100	10/26/2021	AE56950	90.000
	4/12/2022	AE60080	94.000
	10/25/2022	AE63596	112.000
LS-101	10/26/2021	AE56951	40.000
	4/12/2022	AE60081	38.000
	10/25/2022	AE63597	58.000
LS-105	10/26/2021	AE56952	132.000
	4/12/2022	AE60082	118.000
	10/25/2022	AE63598	160.000
LS-106	10/26/2021	AE56953	70.000
	4/12/2022	AE60083	76.000
	10/25/2022	AE63599	122.000
LS-107	10/26/2021	AE56954	134.000
	4/12/2022	AE60084	132.000
	10/25/2022	AE63600	218.000

TABLE 3 STATISTICAL BACKGROUND VALUES

2022 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT WESTON DISPOSAL SITE NO. 3 LANDFILL

TOWN OF KNOWLTON, WISCONSIN

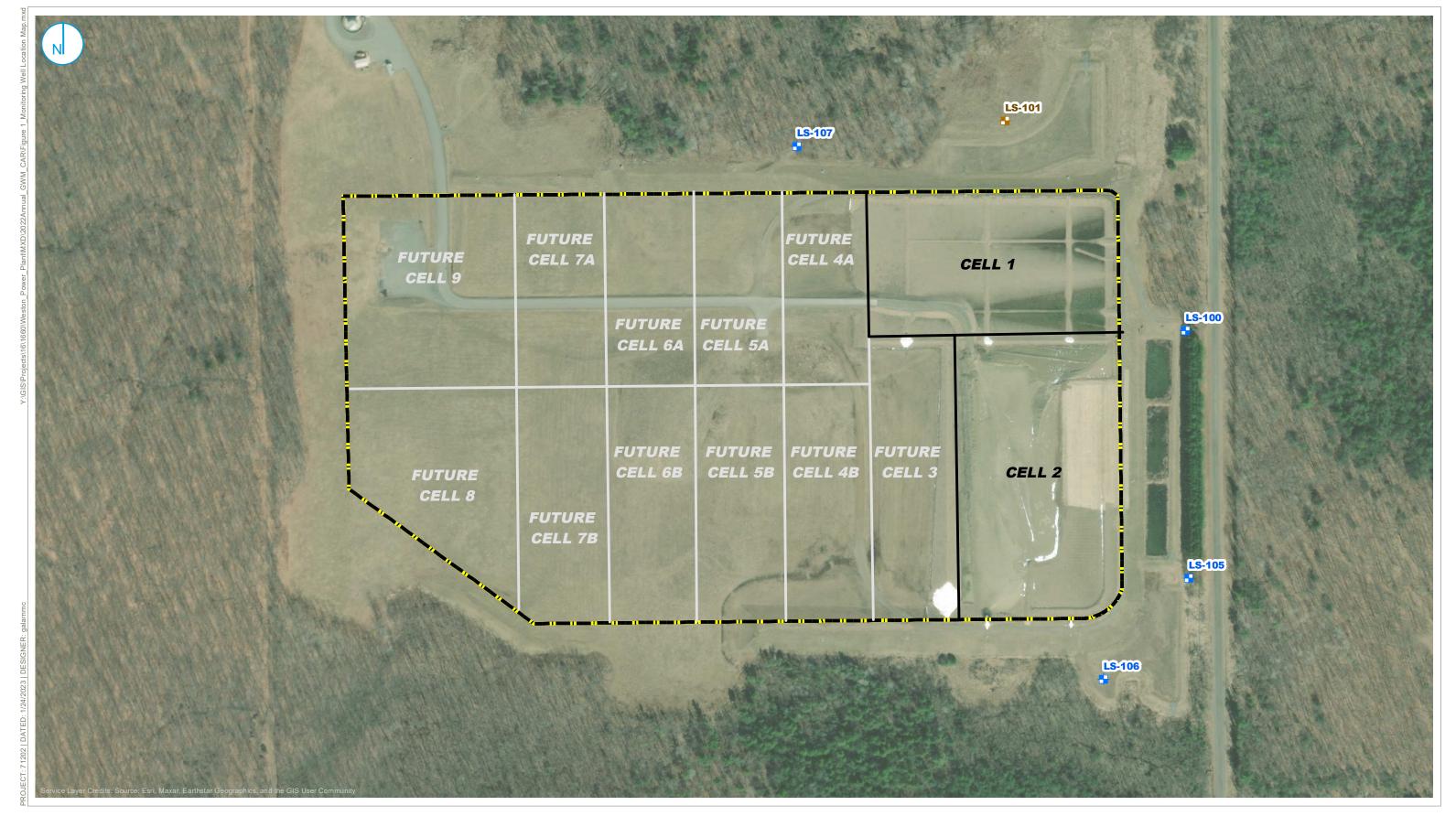
Parameter	Statistical Background Value (LPL/UPL)
40 C.F.R. Part	257 Appendix III
Boron (mg/L)	0.0430
Calcium (mg/L)	12.9
Chloride (mg/L)	4.26
Fluoride (mg/L)	DQR
pH (field) (SU)	4.9/8.8
Sulfate (mg/L)	13.3
Total Dissolved Solids (mg/L)	100

Notes:

40 C.F.R. = Title 40 of the Code of Federal Regulations

LPL = Lower Prediction Limit (applicable for pH only)

mg/L = milligrams per liter

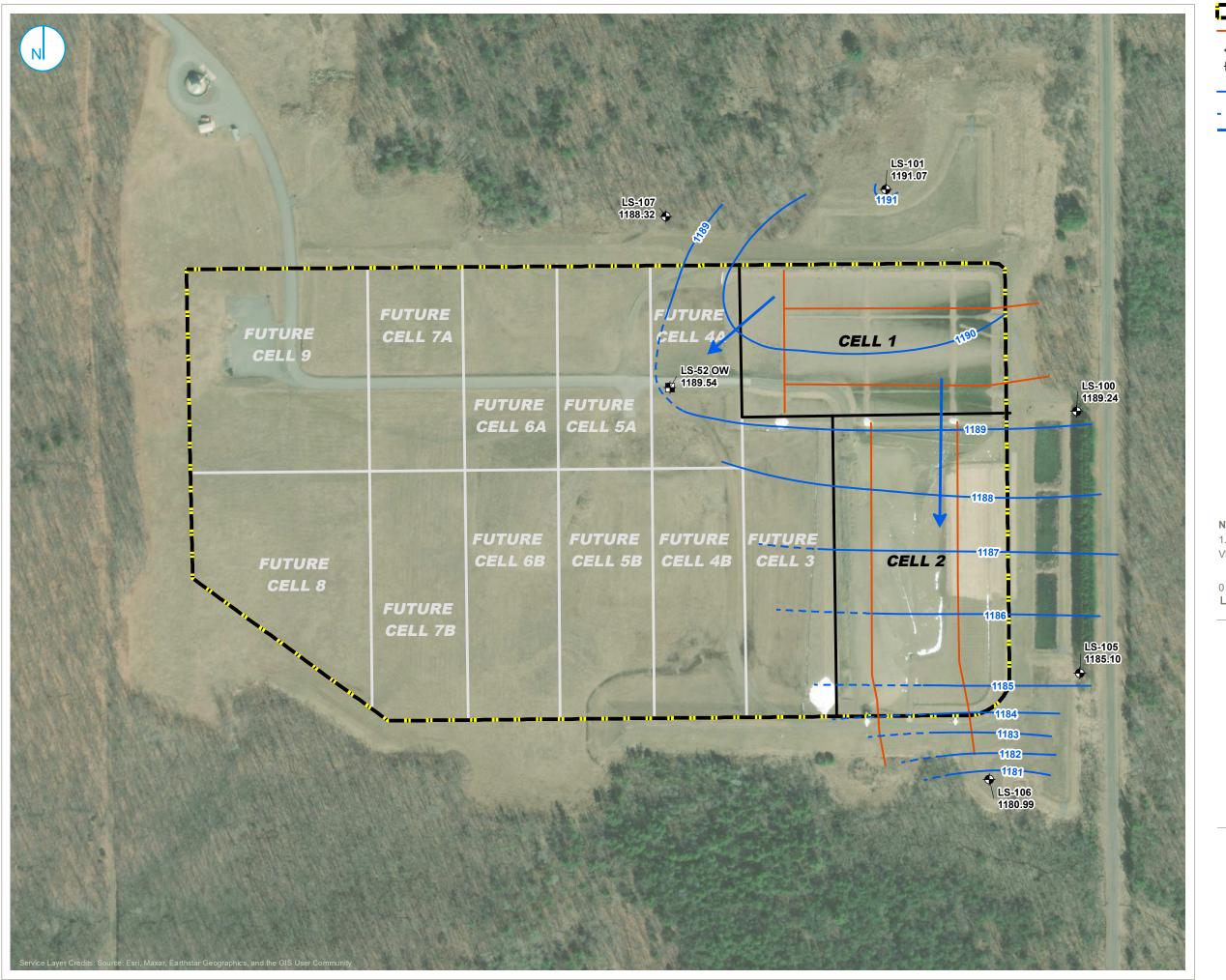

DQR = Double quantification rule, background data set is non-detect. If parameter is detected in both the sample event and a resample it is considered an exceedance.

SU = Standard Units

UPL = Upper Prediction Limit

FIGURES

CCR RULE DOWNGRADIENT MONITORING WELL LOCATION
CCR RULE UPGRADIENT MONITORING WELL LOCATION
WESTON DISPOSAL SITE NO. 3 LANDFILL


MONITORING WELL LOCATION MAP

RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC.

FIGURE 1

2022 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT WESTON DISPOSAL SITE NO. 3 LANDFILL TOWN OF KNOWLTON, WISCONSIN

WESTON DISPOSAL SITE NO. 3 LANDFILL

GROUNDWATER GRADIENT CONTROL SYSTEM

CCR RULE MONITORING WELL

MONITORING WELL LOCATION

GROUNDWATER ELEVATION CONTOUR (1-FT CONTOUR INTERVAL, NAVD 88)

- - - INFERRED GROUNDWATER ELEVATION CONTOUR

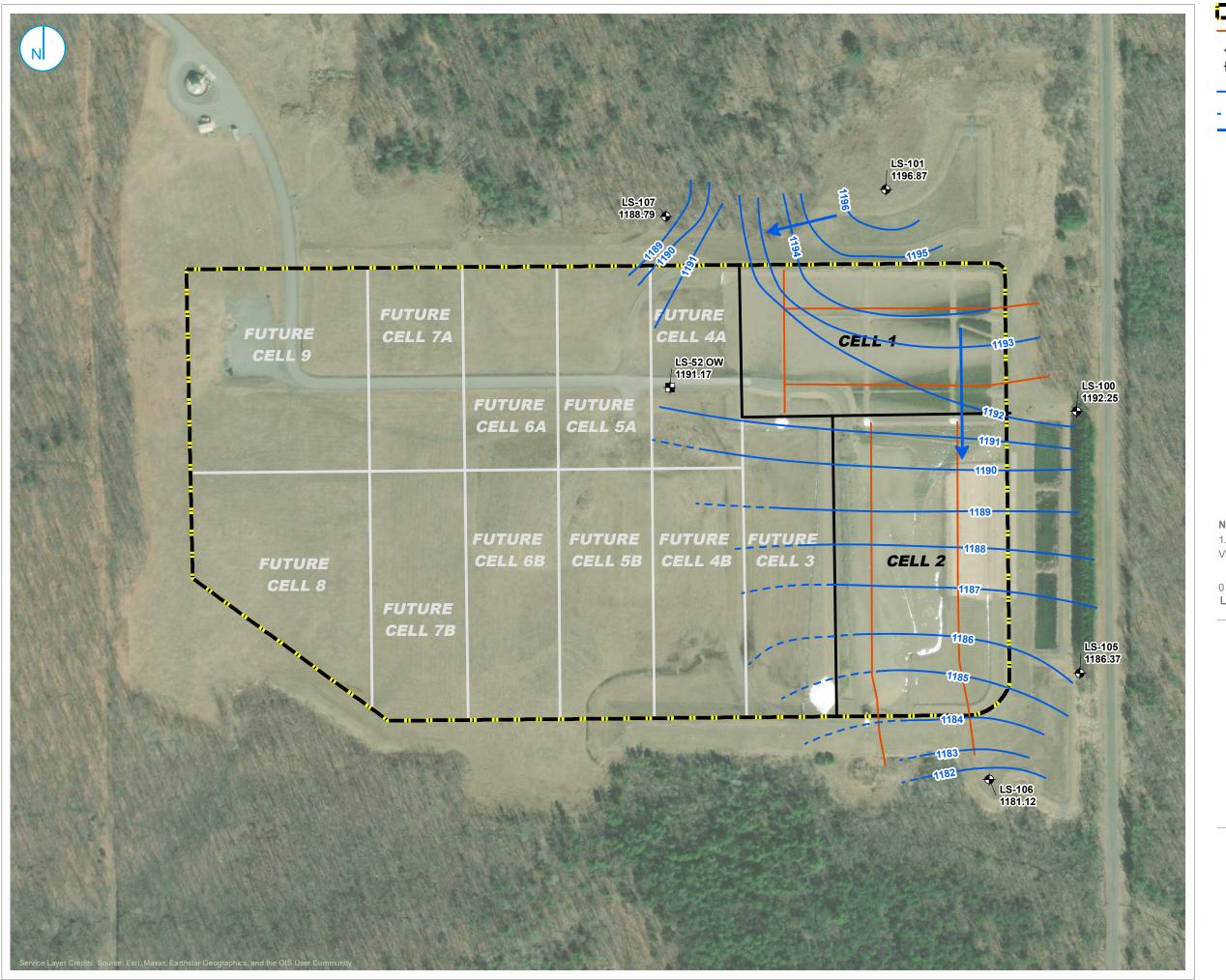
GROUNDWATER FLOW DIRECTION

NOTES

1. VERTICAL DATUM IS NORTH AMERICAN VERTICAL DATUM 1988 (NAVD88).

) 125 250 L J Fee

> POTENTIOMETRIC SURFACE MAP OCTOBER 26, 2021


2022 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT WESTON DISPOSAL SITE NO. 3 LANDFILL

TOWN OF KNOWLTON, WISCONSIN

FIGURE 2

RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC.

WESTON DISPOSAL SITE NO. 3 LANDFILL

GROUNDWATER GRADIENT CONTROL SYSTEM

CCR RULE MONITORING WELL

MONITORING WELL LOCATION

GROUNDWATER ELEVATION CONTOUR (1-FT CONTOUR INTERVAL, NAVD 88)

- - - INFERRED GROUNDWATER ELEVATION CONTOUR

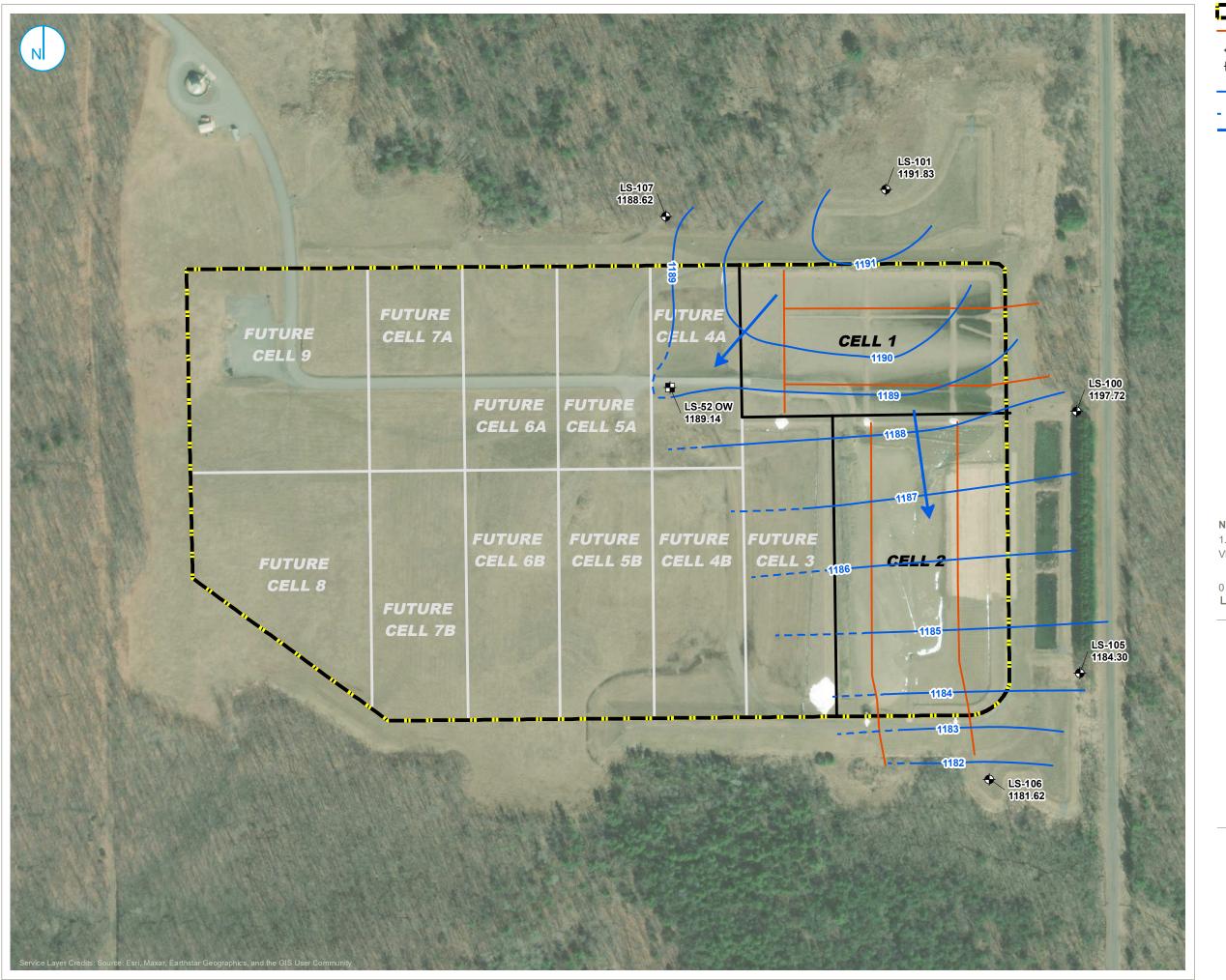
GROUNDWATER FLOW DIRECTION

NOTES

1. VERTICAL DATUM IS NORTH AMERICAN VERTICAL DATUM 1988 (NAVD88).

) 125 250 L J Fee

> POTENTIOMETRIC SURFACE MAP APRIL 12, 2022


2022 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT WESTON DISPOSAL SITE NO. 3 LANDFILL

TOWN OF KNOWLTON, WISCONSIN

FIGURE 3

RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC.

WESTON DISPOSAL SITE NO. 3 LANDFILL - GROUNDWATER GRADIENT CONTROL SYSTEM ◆ CCR RULE MONITORING WELL

➡ MONITORING WELL LOCATION

GROUNDWATER ELEVATION CONTOUR (1-FT CONTOUR INTERVAL, NAVD 88)

- - - INFERRED GROUNDWATER ELEVATION CONTOUR

GROUNDWATER FLOW DIRECTION

1. VERTICAL DATUM IS NORTH AMERICAN VERTICAL DATUM 1988 (NAVD88).

125 250

> POTENTIOMETRIC SURFACE MAP **OCTOBER 25, 2022**

2022 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT **WESTON DISPOSAL SITE NO. 3 LANDFILL**

TOWN OF KNOWLTON, WISCONSIN

FIGURE 4

RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC.

APPENDICES

APPENDIX A LABORATORY REPORTS

To: Bob Meidl

PSB Annex A231

From: WEC Business Services

Laboratory Services PSBA-A070 WDNR Cert # 241329000

Report Date: Thursday, December 2, 2021

The following are the analytical results for samples received by Laboratory Services:

Sample Description: LS-100 Weston Disposal Site #3 - Ash Landfill CCR Well

Sample ID: AE56950 Sample Collection Date/Time: 10/26/2021 11:19
Sample Received: 10/29/2021 Sample Collector: CODY APPLEKAMP

						Result	Analysis	Analysis	
<u>Parameter</u>	Result	<u>LOD</u>	<u>Units</u>	<u>LOQ</u>	<u>DIL</u>	Flag	Method	<u>Date</u>	<u>Analyst</u>
Field Water Level	9.80	0.05	feet		1.0		H2OD	10/26/21	C APPLEKAMP
Field Conductivity	116	0	umhos		1.0		FCOND25	10/26/21	C APPLEKAMP
Field pH	5.6	0.1	Units	0.1	1.0		FIELDPH	10/26/21	C APPLEKAMP
Field Temperature	15.0	0.1	Degrees C		1.0		TEMP	10/26/21	C APPLEKAMP
Total Boron	35.2	17.3	ug/L	40.0	1.0	J	EPA 200.7	10/29/21	020
Total Calcium	15700	114	ug/L	500	1.0		EPA 200.7	10/29/21	020
Total Chloride	1.6	0.43	mg/L	2.0	1.0	J,X	EPA 300.0	11/9/21	020
Total Fluoride	Less Than	0.095	mg/L	0.32	1.0		EPA 300.0	10/29/21	020
Total Sulfate	21.1	0.44	mg/L	2.0	1.0		EPA 300.0	11/9/21	020
Dissolved Oxygen-Field	0.61	0.1	mg/l		1.0		FIELDDO	10/26/21	C APPLEKAMP
Turbidity	2.48	0.1	NTU'S		1.0	X	EPA 180.1	10/26/21	C APPLEKAMP
Redox Potential	264	1	mV		1.0		ASTM D1498-93	10/26/21	C APPLEKAMP
Total Dissolved Solids	90.0	8.7	mg/L	20.0	1.0		Std Mtd 2540 C	10/28/21	020
Dissolved Sulfate	19.0	0.44	mg/L	2.0	1.0		EPA 300.0	11/8/21	020
Dissolved Chloride	1.5	0.43	mg/L	2.0	1.0	J,X	EPA 300.0	11/8/21	020
Dissolved Magnesium	2510	182	ug/L	1000	1.0		EPA 200.7	10/29/21	020
Dissolved Calcium	15100	114	ug/L	500	1.0		EPA 200.7	10/29/21	020
Dissolved Sodium	2610	350	ug/L	500	1.0		EPA 200.7	10/29/21	020
Dissolved Potassium	1370	325	ug/L	1000	1.0		EPA 200.7	10/29/21	020
Total Filtered Alkalinity as CaCO3	28.8	5.0	mg/l	10	1.0		Std Mtd 2320 B	11/4/21	020
Bicarbonate Ion	28.8	5.0	mg/L	10.0	1.0		HCO3	11/4/21	020
Carbonate Ion	Less Than	5.0	mg/L	10.0	1.0		CO3	11/4/21	020

Sample Comments:

Sample Description: LS-101 Weston Disposal Site #3 - Ash Landfill CCR Well

Sample ID: AE56951 Sample Collection Date/Time: 10/26/2021 10:16
Sample Received: 10/29/2021 Sample Collector: CODY APPLEKAMP

						Result	Analysis	Analysis	
<u>Parameter</u>	<u>Result</u>	<u>LOD</u>	<u>Units</u>	<u>LOQ</u>	<u>DIL</u>	Flag	Method	Date	Analyst
Field Water Level	14.34	0.05	feet		1.0		H2OD	10/26/21	C APPLEKAMP
Field Conductivity	53	0	umhos		1.0		FCOND25	10/26/21	C APPLEKAMP
Field pH	5.7	0.1	Units	0.1	1.0		FIELDPH	10/26/21	C APPLEKAMP
Field Temperature	11.8	0.1	Degrees C		1.0		TEMP	10/26/21	C APPLEKAMP
Total Boron	Less Than	17.3	ug/L	40.0	1.0		EPA 200.7	10/29/21	020
Total Calcium	5420	114	ug/L	500	1.0		EPA 200.7	10/29/21	020

The following are the analytical results for samples received by Laboratory Services:

Sample Description: LS-101 Weston Disposal Site #3 - Ash Landfill CCR Well

Sample ID: AE56951 Sample Collection Date/Time: 10/26/2021 10:16
Sample Received: 10/29/2021 Sample Collector: CODY APPLEKAMP

						Result	Analysis	Analysis	
<u>Parameter</u>	Result	<u>LOD</u>	<u>Units</u>	<u>LOQ</u>	<u>DIL</u>	<u>Flag</u>	Method	<u>Date</u>	<u>Analyst</u>
Total Chloride	2.5	0.43	mg/L	2.0	1.0	X	EPA 300.0	11/9/21	020
Total Fluoride	Less Than	0.095	mg/L	0.32	1.0		EPA 300.0	10/29/21	020
Total Sulfate	2.6	0.44	mg/L	2.0	1.0		EPA 300.0	11/9/21	020
Dissolved Oxygen-Field	5.92	0.1	mg/l		1.0		FIELDDO	10/26/21	C APPLEKAMP
Turbidity	9.33	0.1	NTU'S		1.0		EPA 180.1	10/26/21	C APPLEKAMP
Redox Potential	265	1	mV		1.0		ASTM D1498-93	10/26/21	C APPLEKAMP
Total Dissolved Solids	40.0	8.7	mg/L	20.0	1.0		Std Mtd 2540 C	10/28/21	020
Dissolved Sulfate	2.5	0.44	mg/L	2.0	1.0		EPA 300.0	11/8/21	020
Dissolved Chloride	0.68	0.43	mg/L	2.0	1.0	J,X	EPA 300.0	11/8/21	020
Dissolved Magnesium	1120	182	ug/L	1000	1.0		EPA 200.7	10/29/21	020
Dissolved Calcium	5470	114	ug/L	500	1.0		EPA 200.7	10/29/21	020
Dissolved Sodium	3440	350	ug/L	500	1.0		EPA 200.7	10/29/21	020
Dissolved Potassium	1510	325	ug/L	1000	1.0		EPA 200.7	10/29/21	020
Total Filtered Alkalinity as CaCO3	22.8	5.0	mg/l	10.0	1.0		Std Mtd 2320 B	11/4/21	020
Bicarbonate Ion	22.8	5.0	mg/L	10.0	1.0		HCO3	11/4/21	020
Carbonate Ion	Less Than	5.0	mg/L	10.0	1.0		CO3	11/4/21	020

Sample Comments:

Sample Description: LS-105 Weston Disposal Site #3 - Ash Landfill CCR Well

Sample ID: AE56952 Sample Collection Date/Time: 10/26/2021 12:00
Sample Received: 10/29/2021 Sample Collector: CODY APPLEKAMP

<u>Parameter</u>	Result	<u>LOD</u>	<u>Units</u>	LOQ	DIL	Result <u>Flag</u>	Analysis <u>Method</u>	Analysis <u>Date</u>	<u>Analyst</u>
Field Water Level	5.18	0.05	feet		1.0		H2OD	10/26/21	C APPLEKAMP
Field Conductivity	207	0	umhos		1.0		FCOND25	10/26/21	C APPLEKAMP
Field pH	5.9	0.1	Units	0.1	1.0		FIELDPH	10/26/21	C APPLEKAMP
Field Temperature	14.7	0.1	Degrees C		1.0		TEMP	10/26/21	C APPLEKAMP
Total Boron	39.6	17.3	ug/L	40.0	1.0	J	EPA 200.7	10/29/21	020
Total Calcium	23100	114	ug/L	500	1.0		EPA 200.7	10/29/21	020
Total Chloride	2.1	0.43	mg/L	2.0	1.0	X	EPA 300.0	11/9/21	020
Total Fluoride	Less Than	0.095	mg/L	0.32	1.0		EPA 300.0	10/29/21	020
Total Sulfate	25.2	0.44	mg/L	2.0	1.0		EPA 300.0	11/9/21	020
Dissolved Oxygen-Field	0.05	0.1	mg/l		1.0		FIELDDO	10/26/21	C APPLEKAMP
Turbidity	1.51	0.1	NTU'S		1.0	X	EPA 180.1	10/26/21	C APPLEKAMP
Redox Potential	11.5	1	mV		1.0		ASTM D1498-93	10/26/21	C APPLEKAMP
Total Dissolved Solids	132	8.7	mg/L	20.0	1.0		Std Mtd 2540 C	10/28/21	020
Dissolved Sulfate	26.4	0.44	mg/L	2.0	1.0		EPA 300.0	11/8/21	020
Dissolved Chloride	2.2	0.44	mg/L	2.0	1.0	X	EPA 300.0	11/8/21	020
Dissolved Magnesium	5430	182	ug/L	1000	1.0		EPA 200.7	10/29/21	020
Dissolved Calcium	23100	114	ug/L	500	1.0		EPA 200.7	10/29/21	020
Dissolved Sodium	4590	350	ug/L	500	1.0		EPA 200.7	10/29/21	020
Dissolved Potassium	1620	325	ug/L	1000	1.0		EPA 200.7	10/29/21	020
Total Filtered Alkalinity as CaCO3	65.5	5.0	mg/l	10.0	1.0		Std Mtd 2320 B	11/4/21	020

The following are the analytical results for samples received by Laboratory Services:

Sample Description: LS-105 Weston Disposal Site #3 - Ash Landfill CCR Well

Sample ID: AE56952 Sample Collection Date/Time: 10/26/2021 12:00 Sample Received: 10/29/2021 Sample Collector: CODY APPLEKAMP

					R	Result	Analysis	Analysis	
<u>Parameter</u>	Result	<u>LOD</u>	<u>Units</u>	<u>LOQ</u>	<u>DIL</u> <u>F</u>	lag	Method	<u>Date</u>	<u>Analyst</u>
Bicarbonate Ion	65.5	5.0	mg/L	10.0	1.0		HCO3	11/4/21	020
Carbonate Ion	Less Than	5.0	mg/L	10.0	1.0		CO3	11/4/21	020

Sample Comments:

Sample Description: LS-106 Weston Disposal Site #3 - Ash Landfill CCR Well

Sample ID: AE56953 Sample Collection Date/Time: 10/26/2021 13:04
Sample Received: 10/29/2021 Sample Collector: CODY APPLEKAMP

						Result	Analysis	Analysis	
<u>Parameter</u>	Result	<u>LOD</u>	<u>Units</u>	<u>LOQ</u>	<u>DIL</u>	Flag	Method	Date	<u>Analyst</u>
Field Water Level	12.25	0.05	feet		1.0		H2OD	10/26/21	C APPLEKAMP
Field Conductivity	116	0	umhos		1.0		FCOND25	10/26/21	C APPLEKAMP
Field pH	5.9	0.1	Units	0.1	1.0		FIELDPH	10/26/21	C APPLEKAMP
Field Temperature	14.8	0.1	Degrees C		1.0		TEMP	10/26/21	C APPLEKAMP
Total Boron	22.6	17.3	ug/L	40.0	1.0	J	EPA 200.7	10/29/21	020
Total Calcium	12500	114	ug/L	500	1.0		EPA 200.7	10/29/21	020
Total Chloride	2.4	0.43	mg/L	2.0	1.0		EPA 300.0	11/9/21	020
Total Fluoride	Less Than	0.095	mg/L	0.32	1.0		EPA 300.0	10/29/21	020
Total Sulfate	4.8	0.44	mg/L	2.0	1.0		EPA 300.0	11/9/21	020
Dissolved Oxygen-Field	0.53	0.1	mg/l		1.0		FIELDDO	10/26/21	C APPLEKAMP
Turbidity	8.41	0.1	NTU'S		1.0		EPA 180.1	10/26/21	C APPLEKAMP
Redox Potential	125	1	mV		1.0		ASTM D1498-93	10/26/21	C APPLEKAMP
Total Dissolved Solids	70.0	8.7	mg/L	20.0	1.0		Std Mtd 2540 C	10/28/21	020
Dissolved Sulfate	4.8	0.44	mg/L	2.0	1.0		EPA 300.0	11/8/21	020
Dissolved Chloride	2.4	0.43	mg/L	2.0	1.0	X	EPA 300.0	11/8/21	020
Dissolved Magnesium	3880	182	ug/L	1000	1.0		EPA 200.7	10/29/21	020
Dissolved Calcium	12200	114	ug/L	500	1.0		EPA 200.7	10/29/21	020
Dissolved Sodium	4860	350	ug/L	500	1.0		EPA 200.7	10/29/21	020
Dissolved Potassium	1780	325	ug/L	1000	1.0		EPA 200.7	10/29/21	020
Total Filtered Alkalinity as CaCO3	49.4	5.0	mg/l	10.0	1.0		Std Mtd 2320 B	11/4/21	020
Bicarbonate Ion	49.4	5.0	mg/L	10.0	1.0		HCO3	11/4/21	020
Carbonate Ion	Less Than	5.0	mg/L	10.0	1.0		CO3	11/4/21	020

Sample Comments:

Sample Description: LS-107 Weston Disposal Site #3 - Ash Landfill CCR Well

Sample ID: AE56954 Sample Collection Date/Time: 10/26/2021 09:16
Sample Received: 10/29/2021 Sample Collector: CODY APPLEKAMP

						Result	Analysis	Analysis	
<u>Parameter</u>	<u>Result</u>	<u>LOD</u>	<u>Units</u>	LOQ	<u>DIL</u>	<u>Flag</u>	Method	<u>Date</u>	<u>Analyst</u>
Field Water Level	6.07	0.05	feet		1.0		H2OD	10/26/21	C APPLEKAMP
Field Conductivity	215	0	umhos		1.0		FCOND25	10/26/21	C APPLEKAMP

The following are the analytical results for samples received by Laboratory Services:

Sample Description: LS-107 Weston Disposal Site #3 - Ash Landfill CCR Well

Sample ID: AE56954 Sample Collection Date/Time: 10/26/2021 09:16
Sample Received: 10/29/2021 Sample Collector: CODY APPLEKAMP

						Result	Analysis	Analysis	
<u>Parameter</u>	<u>Result</u>	<u>LOD</u>	<u>Units</u>	LOQ	<u>DIL</u>	<u>Flag</u>	Method	Date	<u>Analyst</u>
Field pH	5.7	0.1	Units	0.1	1.0		FIELDPH	10/26/21	C APPLEKAMP
Field Temperature	12.7	0.1	Degrees C		1.0		TEMP	10/26/21	C APPLEKAMP
Total Boron	22.4	17.3	ug/L	40.0	1.0	J	EPA 200.7	10/29/21	020
Total Calcium	26400	114	ug/L	500	1.0		EPA 200.7	10/29/21	020
Total Chloride	5.7	0.43	mg/L	2.0	1.0	X	EPA 300.0	11/9/21	020
Total Fluoride	Less Than	0.095	mg/L	0.32	1.0		EPA 300.0	10/29/21	020
Total Sulfate	42.0	0.44	mg/L	2.0	1.0		EPA 300.0	11/9/21	020
Dissolved Oxygen-Field	0.15	0.1	mg/l		1.0		FIELDDO	10/26/21	C APPLEKAMP
Turbidity	1.48	0.1	NTU'S		1.0	X	EPA 180.1	10/26/21	C APPLEKAMP
Redox Potential	276	1	mV		1.0		ASTM D1498-93	10/26/21	C APPLEKAMP
Total Dissolved Solids	134	8.7	mg/L	20.0	1.0		Std Mtd 2540 C	10/28/21	020
Dissolved Sulfate	41.4	0.44	mg/L	2.0	1.0		EPA 300.0	11/8/21	020
Dissolved Chloride	5.7	0.43	mg/L	2.0	1.0		EPA 300.0	11/8/21	020
Dissolved Magnesium	6200	182	ug/L	1000	1.0		EPA 200.7	10/29/21	020
Dissolved Calcium	27000	114	ug/L	500	1.0		EPA 200.7	10/29/21	020
Dissolved Sodium	6170	350	ug/L	500	1.0		EPA 200.7	10/29/21	020
Dissolved Potassium	1780	325	ug/L	1000	1.0		EPA 200.7	10/29/21	020
Total Filtered Alkalinity as CaCO3	48.4	5.0	mg/l	10.0	1.0		Std Mtd 2320 B	11/4/21	020
Bicarbonate Ion	48.4	5.0	mg/L	10.0	1.0		HCO3	11/4/21	020
Carbonate Ion	Less Than	5.0	mg/L	10.0	1.0		CO3	11/4/21	020

Sample Comments:

Sample Description: QA/QC1 Weston Disposal Site #3 - Ash Landfill CCR Well

Sample ID: AE56955 Sample Collection Date/Time: 10/26/2021 00:00 Sample Received: 10/29/2021 Sample Collector: CODY APPLEKAMP

<u>Parameter</u>	<u>Result</u>	<u>LOD</u>	<u>Units</u>	LOQ	DIL	Result <u>Flag</u>	Analysis <u>Method</u>	Analysis <u>Date</u>	<u>Analyst</u>
Total Boron	Less Than	17.3	ug/L	40.0	1.0		EPA 200.7	10/29/21	020
Total Calcium	5700	114	ug/L	500	1.0		EPA 200.7	10/29/21	020
Total Chloride	0.71	0.43	mg/L	2.0	1.0	J,X	EPA 300.0	11/9/21	020
Total Fluoride	Less Than	0.095	mg/L	0.32	1.0		EPA 300.0	10/29/21	020
Total Sulfate	2.7	0.44	mg/L	2.0	1.0		EPA 300.0	11/9/21	020
Total Dissolved Solids	62.0	8.7	mg/L	20.0	1.0		Std Mtd 2540 C	10/28/21	020
Dissolved Sulfate	2.7	0.44	mg/L	2.0	1.0		EPA 300.0	11/8/21	020
Dissolved Chloride	0.69	0.43	mg/L	2.0	1.0	J,X	EPA 300.0	11/8/21	020
Dissolved Magnesium	1150	182	ug/L	1000	1.0		EPA 200.7	10/29/21	020
Dissolved Calcium	5630	114	ug/L	500	1.0		EPA 200.7	10/29/21	020
Dissolved Sodium	3430	350	ug/L	500	1.0		EPA 200.7	10/29/21	020
Dissolved Potassium	1580	325	ug/L	1000	1.0		EPA 200.7	10/29/21	020
Total Filtered Alkalinity as CaCO3	23.4	5.0	mg/l	10.0	1.0		Std Mtd 2320 B	11/4/21	020
Bicarbonate Ion	23.4	5.0	mg/L	10.0	1.0		HCO3	11/4/21	020
Carbonate Ion	Less Than	5.0	mg/L	10.0	1.0		CO3	11/4/21	020

The following are the analytical results for samples received by Laboratory Services:

Sample Comments:

Sample Description: EB1 Weston Disposal Site #3 - Ash Landfill CCR Well

Sample ID: AE56956 Sample Collection Date/Time: 10/26/2021 16:45 Sample Received: 10/29/2021 Sample Collector: CODY APPLEKAMP

						Result	Analysis	Analysis	
<u>Parameter</u>	Result	<u>LOD</u>	<u>Units</u>	<u>LOQ</u>	<u>DIL</u>	<u>Flag</u>	Method	<u>Date</u>	<u>Analyst</u>
Field Conductivity	2	0	umhos		1.0		FCOND25	10/26/21	C APPLEKAMP
Field pH	6.5	0.1	Units	0.1	1.0		FIELDPH	10/26/21	C APPLEKAMP
Field Temperature	8.6	0.1	Degrees C		1.0		TEMP	10/26/21	C APPLEKAMP
Total Boron	Less Than	17.3	ug/L	40.0	1.0		EPA 200.7	10/29/21	020
Total Calcium	Less Than	114	ug/L	500	1.0		EPA 200.7	10/29/21	020
Total Chloride	0.78	0.43	mg/L	2.0	1.0	J	EPA 300.0	11/9/21	020
Total Fluoride	Less Than	0.095	mg/L	0.32	1.0		EPA 300.0	10/29/21	020
Total Sulfate	Less Than	0.44	mg/L	2.0	1.0		EPA 300.0	11/9/21	020
Turbidity	0.62	0.1	NTU'S		1.0		EPA 180.1	10/26/21	C APPLEKAMP
Total Dissolved Solids	Less Than	8.7	mg/L	20.0	1.0		Std Mtd 2540 C	10/28/21	020
Dissolved Sulfate	Less Than	0.44	mg/L	2.0	1.0		EPA 300.0	11/8/21	020
Dissolved Chloride	0.53	0.43	mg/L	2.0	1.0	J	EPA 300.0	11/8/21	020
Dissolved Magnesium	Less Than	182	ug/L	1000	1.0		EPA 200.7	10/29/21	020
Dissolved Calcium	Less Than	114	ug/L	500	1.0		EPA 200.7	10/29/21	020
Dissolved Sodium	Less Than	350	ug/L	500	1.0		EPA 200.7	10/29/21	020
Dissolved Potassium	Less Than	325	ug/L	1000	1.0		EPA 200.7	10/29/21	020
Total Filtered Alkalinity as CaCO3	Less Than	5.0	mg/l	10.0	1.0		Std Mtd 2320 B	11/4/21	020
Bicarbonate Ion	Less Than	5.0	mg/L	10.0	1.0		HCO3	11/4/21	020
Carbonate Ion	Less Than	5.0	mg/L	10.0	1.0		CO3	11/4/21	020

Sample Comments:

If there are any questions concerning this report, please contact: Patrick Ahrens at (414) 221-2835.

LOD and LOQ are adjusted for dilution factor.

^{&#}x27;J' Flag, if present indicates an estimated concentration at or above the LOD and below the LOQ.

To: Bob Meidl

PSB Annex A231

From: WEC Business Services

Laboratory Services PSBA-A070 WDNR Cert # 241329000

Report Date: Thursday, May 5, 2022

The following are the analytical results for samples received by Laboratory Services:

Sample Description: LS-100 Weston Disposal Site #3 - Ash Landfill CCR Well

Sample ID: AE60080 Sample Collection Date/Time: 04/12/2022 11:46 Sample Received: 04/14/2022 Sample Collector: C. APPLEKAMP

						Result	Analysis	Analysis	
<u>Parameter</u>	<u>Result</u>	<u>LOD</u>	<u>Units</u>	<u>LOQ</u>	<u>DIL</u>	<u>Flag</u>	Method	<u>Date</u>	<u>Analyst</u>
Field Water Level	6.79	0.05	feet		1		H2OD	4/12/22	C. APPLEKAMF
Field Conductivity	133	0	umhos		1		FCOND25	4/12/22	C. APPLEKAMF
Field pH	5.62	0.1	Units	0.1	1		FIELDPH	4/12/22	C. APPLEKAMF
Field Temperature	4.8	0.1	Degrees		1		TEMP	4/12/22	C. APPLEKAMF
Total Dissolved Solids	94.0	8.7	mg/L	20.0	1		Std Mtd 2540 C	4/13/22	020
Total Boron	20.5	3.0	ug/L	10.0	1	X	EPA 200.7	4/15/22	020
Total Calcium	17000	76.2	ug/L	254	1		EPA 200.7	4/15/22	020
Total Chloride	1.7	0.43	mg/L	2.0	1	J	EPA 300.0	4/13/22	020
Total Fluoride	Less Than	0.095	mg/L	0.32	1		EPA 300.0	4/13/22	020
Total Sulfate	36.5	0.44	mg/L	2.0	1		EPA 300.0	4/13/22	020
Dissolved Oxygen-Field	9.66	0.1	mg/l		1		FIELDDO	4/12/22	C. APPLEKAMF
Turbidity	2.29	0.1	NTU'S		1		EPA 180.1	4/12/22	C. APPLEKAMF
Redox Potential	274.5	1	mV		1		ASTM D1498-93	4/12/22	C. APPLEKAMF
Total Alkalinity as CaCO3	21.1	5.2	mg/L	25.0	1	J	SM 2320 B-1997	4/22/22	020

Sample Comments:

Sample Description: LS-101 Weston Disposal Site #3 - Ash Landfill CCR Well

Sample ID: AE60081 Sample Collection Date/Time: 04/12/2022 10:50 Sample Received: 04/14/2022 Sample Collector: C. APPLEKAMP

<u>Parameter</u>	Result	<u>LOD</u>	<u>Units</u>	LOQ	<u>DIL</u>	Result <u>Flag</u>	Analysis <u>Method</u>	Analysis <u>Date</u>	<u>Analyst</u>
Field Water Level	8.54	0.05	feet		1		H2OD	4/12/22	C. APPLEKAMF
Field Conductivity	31	0	umhos		1		FCOND25	4/12/22	C. APPLEKAMF
Field pH	5.66	0.1	Units	0.1	1		FIELDPH	4/12/22	C. APPLEKAMF
Field Temperature	5.2	0.1	Degrees		1		TEMP	4/12/22	C. APPLEKAMF
Total Dissolved Solids	38.0	8.7	mg/L	20.0	1		Std Mtd 2540 C	4/13/22	020
Total Boron	9.2	3.0	ug/L	10.0	1	J, X	EPA 200.7	4/15/22	020
Total Calcium	2700	76.2	ug/L	254	1		EPA 200.7	4/15/22	020
Total Chloride	0.59	0.43	mg/L	2.0	1	J	EPA 300.0	4/15/22	020
Total Fluoride	Less Than	0.095	mg/L	0.32	1		EPA 300.0	4/15/22	020
Total Sulfate	2.1	0.44	mg/L	2.0	1		EPA 300.0	4/15/22	020
Dissolved Oxygen-Field	12.94	0.1	mg/l		1		FIELDDO	4/12/22	C. APPLEKAMF
Turbidity	6.86	0.1	NTU'S		1		EPA 180.1	4/12/22	C. APPLEKAMF
Redox Potential	267.5	1	mV		1		ASTM D1498-93	4/12/22	C. APPLEKAMF
Total Alkalinity as CaCO3	9.4	5.2	mg/L	25.0	1	J	SM 2320 B-1997	4/22/22	020

Report Date: Thursday, May 5, 2022

The following are the analytical results for samples received by Laboratory Services:

Sample Comments:

Sample Description: LS-105 Weston Disposal Site #3 - Ash Landfill CCR Well

Sample ID: AE60082 Sample Collection Date/Time: 04/12/2022 12:26 Sample Received: 04/14/2022 Sample Collector: C. APPLEKAMP

						Result	Analysis	Analysis	
<u>Parameter</u>	Result	<u>LOD</u>	<u>Units</u>	LOQ	<u>DIL</u>	<u>Flag</u>	Method	<u>Date</u>	<u>Analyst</u>
Field Water Level	3.91	0.05	feet		1		H2OD	4/12/22	C. APPLEKAMF
Field Conductivity	205	0	umhos		1		FCOND25	4/12/22	C. APPLEKAMF
Field pH	5.87	0.1	Units	0.1	1		FIELDPH	4/12/22	C. APPLEKAMF
Field Temperature	5.8	0.1	Degrees		1		TEMP	4/12/22	C. APPLEKAMF
Total Dissolved Solids	118	8.7	mg/L	20.0	1		Std Mtd 2540 C	4/15/22	020
Total Boron	24.1	3.0	ug/L	10.0	1	X	EPA 200.7	4/15/22	020
Total Calcium	22000	76.2	ug/L	254	1		EPA 200.7	4/15/22	020
Total Chloride	1.9	0.43	mg/L	2.0	1	J	EPA 300.0	4/15/22	020
Total Fluoride	Less Than	0.095	mg/L	0.32	1		EPA 300.0	4/15/22	020
Total Sulfate	20.9	0.44	mg/L	2.0	1		EPA 300.0	4/15/22	020
Dissolved Oxygen-Field	0.13	0.1	mg/l		1		FIELDDO	4/12/22	C. APPLEKAMF
Turbidity	1.65	0.1	NTU'S		1		EPA 180.1	4/12/22	C. APPLEKAMF
Redox Potential	-8.6	1	mV		1		ASTM D1498-93	4/12/22	C. APPLEKAMF
Total Alkalinity as CaCO3	73.7	10.4	mg/L	50.0	2		SM 2320 B-1997	4/22/22	020

Sample Comments:

Sample Description: LS-106 Weston Disposal Site #3 - Ash Landfill CCR Well

Sample ID: AE60083 Sample Collection Date/Time: 04/12/2022 13:48 Sample Received: 04/14/2022 Sample Collector: C. APPLEKAMP

<u>Parameter</u>	Result	<u>LOD</u>	<u>Units</u>	LOQ	DIL	Result <u>Flag</u>	Analysis <u>Method</u>	Analysis <u>Date</u>	<u>Analyst</u>
Field Water Level	12.12	0.05	feet		1		H2OD	4/12/22	C. APPLEKAMF
Field Conductivity	48	0	umhos		1		FCOND25	4/12/22	C. APPLEKAMF
Field pH	5.73	0.1	Units	0.1	1		FIELDPH	4/12/22	C. APPLEKAMF
Field Temperature	5.4	0.1	Degrees		1		TEMP	4/12/22	C. APPLEKAMF
Total Dissolved Solids	76.0	8.7	mg/L	20.0	1		Std Mtd 2540 C	4/15/22	020
Total Boron	37.0	3.0	ug/L	10.0	1	X	EPA 200.7	4/15/22	020
Total Calcium	4240	76.2	ug/L	254	1		EPA 200.7	4/15/22	020
Total Chloride	0.99	0.43	mg/L	2.0	1	J	EPA 300.0	4/15/22	020
Total Fluoride	Less Than	0.095	mg/L	0.32	1		EPA 300.0	4/15/22	020
Total Sulfate	2.1	0.44	mg/L	2.0	1		EPA 300.0	4/15/22	020
Dissolved Oxygen-Field	3.25	0.1	mg/l		1		FIELDDO	4/12/22	C. APPLEKAMF
Turbidity	49.16	0.1	NTU'S		1		EPA 180.1	4/12/22	C. APPLEKAMF
Redox Potential	112.0	1	mV		1		ASTM D1498-93	4/12/22	C. APPLEKAMF
Total Alkalinity as CaCO3	Less Than	5.2	mg/L	25.0	1		SM 2320 B-1997	4/22/22	020

Report Date: Thursday, May 5, 2022

The following are the analytical results for samples received by Laboratory Services:

Sample Comments:

Sample Description: L	S-107	Weston Dis	posal Site #3 -	Ash Landfill	CCR Well
-----------------------	-------	------------	-----------------	--------------	----------

Sample ID: AE60084 Sample Collection Date/Time: 04/12/2022 10:13 Sample Received: 04/14/2022 Sample Collector: C. APPLEKAMP

	Dogult	LOD	I Inita	1.00	DII	Result	Analysis Method	Analysis	Amalwat
<u>Parameter</u>	Result	<u>LOD</u>	<u>Units</u>	LOQ	<u>DIL</u>	<u>Flag</u>	Method	<u>Date</u>	<u>Analyst</u>
Field Water Level	5.60	0.05	feet		1		H2OD	4/12/22	C. APPLEKAMF
Field Conductivity	213	0	umhos		1		FCOND25	4/12/22	C. APPLEKAMF
Field pH	5.57	0.1	Units	0.1	1		FIELDPH	4/12/22	C. APPLEKAMF
Field Temperature	5.7	0.1	Degrees		1		TEMP	4/12/22	C. APPLEKAMF
Total Dissolved Solids	132	8.7	mg/L	20.0	1		Std Mtd 2540 C	4/15/22	020
Total Boron	21.5	3.0	ug/L	10.0	1	X	EPA 200.7	4/15/22	020
Total Calcium	24600	76.2	ug/L	254	1		EPA 200.7	4/15/22	020
Total Chloride	5.1	0.43	mg/L	2.0	1		EPA 300.0	4/15/22	020
Total Fluoride	Less Than	0.095	mg/L	0.32	1		EPA 300.0	4/15/22	020
Total Sulfate	42.0	0.44	mg/L	2.0	1		EPA 300.0	4/15/22	020
Dissolved Oxygen-Field	1.12	0.1	mg/l		1		FIELDDO	4/12/22	C. APPLEKAMF
Turbidity	2.08	0.1	NTU'S		1		EPA 180.1	4/12/22	C. APPLEKAMF
Redox Potential	278.4	1	mV		1		ASTM D1498-93	4/12/22	C. APPLEKAMF
Total Alkalinity as CaCO3	53.7	5.2	mg/L	25.0	1		SM 2320 B-1997	4/15/22	020

Sample Comments:

Sample Description: QA/QC1 Weston Disposal Site #3 - Ash Landfill CCR Well

Sample ID: AE60085 Sample Collection Date/Time: 04/12/2022 00:00 Sample Received: 04/14/2022 Sample Collector: C. APPLEKAMP

						Result	Analysis	Analysis	
<u>Parameter</u>	Result	<u>LOD</u>	<u>Units</u>	<u>LOQ</u>	<u>DIL</u>	<u>Flag</u>	Method	<u>Date</u>	<u>Analyst</u>
Total Dissolved Solids	34.0	8.7	mg/L	20.0	1		Std Mtd 2540 C	4/15/22	020
Total Boron	7.6	3.0	ug/L	10.0	1	J, X	EPA 200.7	4/15/22	020
Total Calcium	2610	76.2	ug/L	254	1		EPA 200.7	4/15/22	020
Total Chloride	0.65	0.43	mg/L	2.0	1	J	EPA 300.0	4/15/22	020
Total Fluoride	Less Than	0.095	mg/L	0.32	1		EPA 300.0	4/15/22	020
Total Sulfate	2.1	0.44	mg/L	2.0	1		EPA 300.0	4/15/22	020
Total Alkalinity as CaCO3	9.6	5.2	mg/L	25.0	1	J	SM 2320 B-1997	4/15/22	020

Sample Comments:

Sample Description: EB1 Weston Disposal Site #3 - Ash Landfill CCR Well

Sample ID: AE60086 Sample Collection Date/Time: 04/12/2022 17:20 Sample Received: 04/14/2022 Sample Collector: C. APPLEKAMP

Analysis **Analysis LOD** <u>DIL</u> Method Result <u>Units</u> **LOQ Flag** <u>Date</u> **Analyst Parameter**

Result

Report Date: Thursday, May 5, 2022

The following are the analytical results for samples received by Laboratory Services:

Sample Description: EB1 Weston Disposal Site #3 - Ash Landfill CCR Well

Sample ID: AE60086 Sample Collection Date/Time: 04/12/2022 17:20 Sample Received: 04/14/2022 Sample Collector: C. APPLEKAMP

						Result	Analysis	Analysis	
<u>Parameter</u>	Result	<u>LOD</u>	<u>Units</u>	LOQ	<u>DIL</u>	<u>Flag</u>	Method	<u>Date</u>	Analyst
Total Dissolved Solids	Less Than	8.7	mg/L	20.0	1		Std Mtd 2540 C	4/15/22	020
Total Boron	15.0	3.0	ug/L	10	1		EPA 200.7	4/15/22	020
Total Calcium	Less Than	76.2	ug/L	254	1		EPA 200.7	4/15/22	020
Total Chloride	Less Than	0.43	mg/L	2.0	1		EPA 300.0	4/15/22	020
Total Fluoride	Less Than	0.095	mg/L	0.32	1		EPA 300.0	4/15/22	020
Total Sulfate	Less Than	0.44	mg/L	2.0	1		EPA 300.0	4/15/22	020
Total Alkalinity as CaCO3	Less Than	5.2	mg/L	25.0	1		SM 2320 B-1997	4/15/22	020

Sample Comments:

Sample Description: LS-106 WDS#3 - Ash Landfill CCR Well - FILTERED

Sample ID: AE60087 Sample Collection Date/Time: 04/12/2022 13:48 Sample Received: 04/14/2022 Sample Collector: C. APPLEKAMP

						Result	Analysis	Analysis	
<u>Parameter</u>	<u>Result</u>	<u>LOD</u>	<u>Units</u>	LOQ	<u>DIL</u>	<u>Flag</u>	<u>Method</u>	<u>Date</u>	<u>Analyst</u>
Field Water Level	12.12	0.05	feet		1		H2OD	4/12/22	C. APPLEKAMF
Field Conductivity	48	0	umhos		1		FCOND25	4/12/22	C. APPLEKAMF
Field pH	5.73	0.1	Units	0.1	1		FIELDPH	4/12/22	C. APPLEKAMF
Field Temperature	5.4	0.1	Degrees		1		TEMP	4/12/22	C. APPLEKAMF
Total Dissolved Solids	32.0	8.7	mg/L	20.0	1		Std Mtd 2540 C	4/15/22	020
Dissolved Boron	9.5	3.0	ug/L	10.0	1	J	EPA 200.7	4/22/22	020
Dissolved Calcium	4280	76.2	ug/L	254	1		EPA 200.7	4/22/22	020
Dissolved Chloride	1.0	0.43	mg/L	2.0	1	J	EPA 300.0	4/21/22	020
Dissolved Fluoride	Less Than	0.095	mg/L	0.32	1		EPA 300.0	4/21/22	020
Dissolved Sulfate	2.1	0.44	mg/L	2.0	1		EPA 300.0	4/21/22	020
Dissolved Oxygen-Field	3.25	0.1	mg/l		1		FIELDDO	4/12/22	C. APPLEKAMF
Turbidity	49.16	0.1	NTU'S		1		EPA 180.1	4/12/22	C. APPLEKAMF
Redox Potential	112.0	1	mV		1		ASTM D1498-93	4/12/22	C. APPLEKAMF
Total Filtered Alkalinity as CaCO3	16.7	5.2	mg/l	25.0	1	J	Std Mtd 2320 B	4/21/22	020

Sample Comments:

LOD and LOQ are adjusted for dilution factor.

If there are any questions concerning this report, please contact: Patrick Ahrens at (414) 221-2835.

^{&#}x27;J' Flag, if present indicates an estimated concentration at or above the LOD and below the LOQ.

April 29, 2022

Patrick Ahrens WEC Business Services, LLC. PO BOX 19800 700 NORTH ADAMS Green Bay, WI 543079004

RE: Project: Q-6005-001031 WDS#3 CCR LANDFI

Pace Project No.: 40243379

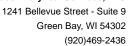
Dear Patrick Ahrens:

Enclosed are the analytical results for sample(s) received by the laboratory on April 13, 2022. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

Pace Analytical Services - Green Bay

If you have any questions concerning this report, please feel free to contact me.


Sincerely,

Brian Basten brian.basten@pacelabs.com (920)469-2436

Project Manager

Enclosures

CERTIFICATIONS

Project: Q-6005-001031 WDS#3 CCR LANDFI

Pace Project No.: 40243379

Pace Analytical Services Green Bay

North Dakota Certification #: R-150

1241 Bellevue Street, Green Bay, WI 54302 Florida/NELAP Certification #: E87948 Illinois Certification #: 200050 Kentucky UST Certification #: 82 Louisiana Certification #: 04168 Minnesota Certification #: 055-999-334 New York Certification #: 12064 Virginia VELAP ID: 460263

South Carolina Certification #: 83006001 Texas Certification #: T104704529-14-1 Wisconsin Certification #: 405132750 Wisconsin DATCP Certification #: 105-444 USDA Soil Permit #: P330-16-00157 Federal Fish & Wildlife Permit #: LE51774A-0

SAMPLE SUMMARY

Project: Q-6005-001031 WDS#3 CCR LANDFI

Pace Project No.: 40243379

Lab ID	Sample ID	Matrix	Date Collected	Date Received
40243379001	LS-100	Water	04/12/22 11:46	04/13/22 15:25
40243379002	LS-101	Water	04/12/22 10:50	04/13/22 15:25
40243379003	LS-105	Water	04/12/22 12:26	04/13/22 15:25
40243379004	LS-106	Water	04/12/22 13:48	04/13/22 15:25
40243379005	LS-107	Water	04/12/22 10:13	04/13/22 15:25
40243379006	QA/QC1	Water	04/12/22 00:00	04/13/22 15:25
40243379007	EB1	Water	04/12/22 17:20	04/13/22 15:25
40243379008	LS-106 (HIGH TURBIDITY DUP)	Water	04/12/22 13:48	04/13/22 15:25

SAMPLE ANALYTE COUNT

Project: Q-6005-001031 WDS#3 CCR LANDFI

Pace Project No.: 40243379

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laborator
40243379001	LS-100	EPA 200.8	KXS	2	PASI-G
		SM 2540C	SRK	1	PASI-G
		EPA 300.0	НМВ	3	PASI-G
		EPA 310.2	DAW	1	PASI-G
0243379002	LS-101	EPA 200.8	KXS	2	PASI-G
		SM 2540C	SRK	1	PASI-G
		EPA 300.0	НМВ	3	PASI-G
		EPA 310.2	DAW	1	PASI-G
0243379003	LS-105	EPA 200.8	KXS	2	PASI-G
		SM 2540C	SRK	1	PASI-G
		EPA 300.0	НМВ	3	PASI-G
		EPA 310.2	DAW	1	PASI-G
0243379004	LS-106	EPA 200.8	KXS	2	PASI-G
		SM 2540C	SRK	1	PASI-G
		EPA 300.0	НМВ	3	PASI-G
		EPA 310.2	DAW	1	PASI-G
0243379005	LS-107	EPA 200.8	KXS	2	PASI-G
		SM 2540C	SRK	1	PASI-G
		EPA 300.0	НМВ	3	PASI-G
		EPA 310.2	DAW	1	PASI-G
0243379006	QA/QC1	EPA 200.8	KXS	2	PASI-G
		SM 2540C	SRK	1	PASI-G
		EPA 300.0	HMB	3	PASI-G
		EPA 310.2	DAW	1	PASI-G
0243379007	EB1	EPA 200.8	KXS	2	PASI-G
		SM 2540C	SRK	1	PASI-G
		EPA 300.0	HMB	3	PASI-G
		EPA 310.2	DAW	1	PASI-G
0243379008	LS-106 (HIGH TURBIDITY DUP)	EPA 200.8	KXS	2	PASI-G
		SM 2540C	SRK	1	PASI-G
		EPA 300.0	НМВ	3	PASI-G
		EPA 310.2	DAW	1	PASI-G

PASI-G = Pace Analytical Services - Green Bay

Project: Q-6005-001031 WDS#3 CCR LANDFI

Pace Project No.: 40243379

Date: 04/29/2022 02:16 PM

Sample: LS-100	Lab ID:	40243379001	Collected	04/12/22	11:46	Received: 04/	/13/22 15:25 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
200.8 MET ICPMS	-	Method: EPA 2			od: EP/	A 200.8			
Boron Calcium	20.5 17000	ug/L ug/L	10.0 254	3.0 76.2	1 1	04/15/22 06:11 04/15/22 06:11	04/27/22 02:50 04/27/22 02:50		
2540C Total Dissolved Solids	•	Method: SM 25 tical Services							
Total Dissolved Solids	94.0	mg/L	20.0	8.7	1		04/14/22 14:39		
300.0 IC Anions	•	Method: EPA 3							
Chloride Fluoride Sulfate	1.7J <0.095 36.5	mg/L mg/L mg/L	2.0 0.32 2.0	0.43 0.095 0.44	1 1 1		04/20/22 13:26 04/20/22 13:26 04/20/22 13:26	16984-48-8	
310.2 Alkalinity	-	Method: EPA 3 /tical Services							
Alkalinity, Total as CaCO3	21.1J	mg/L	25.0	5.2	1		04/22/22 09:42		
Sample: LS-101	Lab ID:	40243379002	Collected	: 04/12/22	2 10:50	Received: 04/	/13/22 15:25 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
200.8 MET ICPMS	-	Method: EPA 2			od: EP/	A 200.8	· · ·		
200.8 MET ICPMS Boron Calcium	-				od: EP/ 1 1	A 200.8 04/15/22 06:11 04/15/22 06:11	04/27/22 03:05 04/28/22 22:24		
Boron	Pace Analy 9.2J 2700 Analytical	rtical Services ug/L	10.0 254	3.0 76.2	1	04/15/22 06:11			
Boron Calcium	Pace Analy 9.2J 2700 Analytical	rtical Services ug/L ug/L Method: SM 25	10.0 254	3.0 76.2	1	04/15/22 06:11			
Boron Calcium 2540C Total Dissolved Solids	Pace Analy 9.2J 2700 Analytical I Pace Analy 38.0 Analytical I	vtical Services ug/L ug/L Method: SM 25 vtical Services	10.0 254 40C - Green Bay 20.0	3.0 76.2 8.7	1	04/15/22 06:11	04/28/22 22:24		
Boron Calcium 2540C Total Dissolved Solids Total Dissolved Solids	Pace Analy 9.2J 2700 Analytical I Pace Analy 38.0 Analytical I	ug/L ug/L ug/L Method: SM 25 rtical Services mg/L Method: EPA 3	10.0 254 40C - Green Bay 20.0	3.0 76.2 8.7	1	04/15/22 06:11	04/28/22 22:24	7440-70-2 16887-00-6 16984-48-8	
Boron Calcium 2540C Total Dissolved Solids Total Dissolved Solids 300.0 IC Anions Chloride Fluoride	Pace Analy 2700 Analytical I Pace Analy 38.0 Analytical I Pace Analy 0.59J 0.095 2.1 Analytical I Analytica	ug/L ug/L Method: SM 25 /tical Services mg/L Method: EPA 3 /tical Services mg/L mg/L	10.0 254 40C - Green Bay 20.0 00.0 - Green Bay 2.0 0.32 2.0	3.0 76.2 8.7 0.43 0.095 0.44	1 1 1 1 1	04/15/22 06:11	04/28/22 22:24 04/14/22 14:39 04/20/22 13:41 04/20/22 13:41	7440-70-2 16887-00-6 16984-48-8	

Project: Q-6005-001031 WDS#3 CCR LANDFI

Pace Project No.: 40243379

Date: 04/29/2022 02:16 PM

Sample: LS-105	Lab ID:	40243379003	Collected	04/12/22	12:26	Received: 04/	13/22 15:25 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
200.8 MET ICPMS		Method: EPA 20			od: EP/	A 200.8			
Boron Calcium	24.1 22000	ug/L ug/L	10.0 254	3.0 76.2	1 1	04/15/22 06:11 04/15/22 06:11	04/27/22 03:12 04/27/22 03:12		
2540C Total Dissolved Solids	•	Method: SM 25 ytical Services							
Total Dissolved Solids	118	mg/L	20.0	8.7	1		04/15/22 15:11		
300.0 IC Anions	•	Method: EPA 30 ytical Services							
Chloride Fluoride Sulfate	1.9J <0.095 20.9	mg/L mg/L mg/L	2.0 0.32 2.0	0.43 0.095 0.44	1 1 1		04/20/22 13:55 04/20/22 13:55 04/20/22 13:55	16984-48-8	
310.2 Alkalinity		Method: EPA 3							
Alkalinity, Total as CaCO3	73.7	mg/L	50.0	10.4	2		04/22/22 09:47		
Sample: LS-106	Lab ID:	40243379004	Collected	: 04/12/22	13:48	Received: 04/	/13/22 15:25 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
200.8 MET ICPMS									
		Method: EPA 20 ytical Services			od: EP/	A 200.8			
Boron Calcium					od: EP/ 1 1	04/15/22 06:11 04/15/22 06:11	04/27/22 03:19 04/27/22 03:19		
Calcium	Pace Analy 37.0 4240 Analytical	ytical Services · ug/L	10.0 254 40C	3.0 76.2	1	04/15/22 06:11			
Calcium 2540C Total Dissolved Solids	Pace Analy 37.0 4240 Analytical	ytical Services ug/L ug/L Method: SM 25	10.0 254 40C	3.0 76.2	1	04/15/22 06:11			
Calcium 2540C Total Dissolved Solids Total Dissolved Solids	Analytical Analytical Analytical Analytical Analytical	ytical Services of ug/L ug/L ug/L Method: SM 25	10.0 254 40C - Green Bay 20.0	3.0 76.2	1	04/15/22 06:11	04/27/22 03:19		
	Analytical Analytical Analytical Analytical Analytical	ug/L ug/L ug/L Method: SM 25 ytical Services mg/L Method: EPA 30	10.0 254 40C - Green Bay 20.0	3.0 76.2	1	04/15/22 06:11	04/27/22 03:19	7440-70-2 16887-00-6 16984-48-8	
Calcium 2540C Total Dissolved Solids Total Dissolved Solids 300.0 IC Anions Chloride Fluoride	Analytical Pace Analytical Pace Analytical Pace Analytical Pace Analytical Pace Analytical Pace Analytical Analytical Analytical	ug/L ug/L Method: SM 25 ytical Services - mg/L Method: EPA 30 ytical Services - mg/L mg/L mg/L	10.0 254 40C - Green Bay 20.0 00.0 - Green Bay 2.0 0.32 2.0	3.0 76.2 8.7 0.43 0.095 0.44	1 1 1 1 1	04/15/22 06:11	04/27/22 03:19 04/15/22 15:11 04/20/22 14:55 04/20/22 14:55	7440-70-2 16887-00-6 16984-48-8	

Project: Q-6005-001031 WDS#3 CCR LANDFI

Pace Project No.: 40243379

Date: 04/29/2022 02:16 PM

Sample: LS-107	Lab ID:	40243379005	Collected	d: 04/12/22	2 10:13	Received: 04/	13/22 15:25 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
200.8 MET ICPMS	-	Method: EPA 2 ytical Services			od: EP	A 200.8			
Boron Calcium	21.5 24600	ug/L ug/L	10.0 254	3.0 76.2	1 1	04/15/22 06:11 04/15/22 06:11			
2540C Total Dissolved Solids	•	Method: SM 2 ytical Services		/					
Total Dissolved Solids	132	mg/L	20.0	8.7	1		04/15/22 15:12		
300.0 IC Anions	•	Method: EPA 3		/					
Chloride Fluoride Sulfate	5.1 <0.095 42.0	mg/L mg/L mg/L	2.0 0.32 2.0	0.43 0.095 0.44	1 1 1		04/20/22 15:10 04/20/22 15:10 04/20/22 15:10	16984-48-8	
310.2 Alkalinity	-	Method: EPA 3		/					
Alkalinity, Total as CaCO3	53.7	mg/L	25.0	5.2	1		04/22/22 09:51		
Sample: QA/QC1	Lab ID:	40243379006	Collected	d: 04/12/22	2 00:00	Received: 04/	13/22 15:25 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
200.8 MET ICPMS	A b - t' b								
		Method: EPA 2 ytical Services			od: EP	A 200.8			
Boron Calcium					od: EP 1 1	04/15/22 06:11	04/27/22 03:49 04/28/22 22:31		
	Pace Analy 7.6J 2610 Analytical	ytical Services ug/L	10.0 10.0 254 540C	3.0 76.2	1	04/15/22 06:11			
Calcium	Pace Analy 7.6J 2610 Analytical	ytical Services ug/L ug/L Method: SM 2	10.0 10.0 254 540C	3.0 76.2	1	04/15/22 06:11			
Calcium 2540C Total Dissolved Solids Total Dissolved Solids	Pace Analytical Pace Analytical 34.0 Analytical	ytical Services ug/L ug/L Method: SM 2 ytical Services	5- Green Bay 10.0 254 540C - Green Bay 20.0	3.0 76.2 7	1	04/15/22 06:11	04/28/22 22:31		
Calcium 2540C Total Dissolved Solids	Pace Analytical Pace Analytical 34.0 Analytical	ug/L ug/L ug/L Method: SM 2 ytical Services mg/L Method: EPA 3	5- Green Bay 10.0 254 540C - Green Bay 20.0	3.0 76.2 7	1	04/15/22 06:11	04/28/22 22:31	7440-70-2 16887-00-6 16984-48-8	
Calcium 2540C Total Dissolved Solids Total Dissolved Solids 300.0 IC Anions Chloride Fluoride	Pace Analytical Analytical Analytical	ug/L ug/L Method: SM 2 ytical Services mg/L Method: EPA 3 ytical Services mg/L mg/L mg/L	10.0 254 540C - Green Bay 20.0 300.0 - Green Bay 2.0 0.32 2.0	3.0 76.2 / 8.7 / 0.43 0.095 0.44	1 1 1 1 1	04/15/22 06:11	04/28/22 22:31 04/15/22 15:12 04/25/22 13:59 04/25/22 13:59	7440-70-2 16887-00-6 16984-48-8	

Project: Q-6005-001031 WDS#3 CCR LANDFI

Pace Project No.: 40243379

Date: 04/29/2022 02:16 PM

Sample: EB1	Lab ID:	40243379007	Collected	: 04/12/22	2 17:20	Received: 04/	/13/22 15:25 Ma	atrix: Water			
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual		
200.8 MET ICPMS	Analytical Method: EPA 200.8 Preparation Method: EPA 200.8 Pace Analytical Services - Green Bay										
Boron Calcium	15.0 <76.2	ug/L ug/L	10.0 254	3.0 76.2	1 1	04/15/22 06:11 04/15/22 06:11	04/27/22 02:13 04/27/22 02:13				
2540C Total Dissolved Solids	•	Method: SM 25									
Total Dissolved Solids	<8.7	mg/L	20.0	8.7	1		04/15/22 15:12				
300.0 IC Anions	•	Method: EPA 30 ytical Services									
Chloride Fluoride Sulfate	<0.43 <0.095 <0.44	mg/L mg/L mg/L	2.0 0.32 2.0	0.43 0.095 0.44	1 1 1		04/25/22 14:13 04/25/22 14:13 04/25/22 14:13	16984-48-8			
310.2 Alkalinity	-	Method: EPA 3 ytical Services									
Alkalinity, Total as CaCO3	<5.2	mg/L	25.0	5.2	1		04/22/22 09:53				
Sample: LS-106 (HIGH TURBIDITY DUP)	Lab ID:	40243379008	Collected	: 04/12/22	2 13:48	Received: 04/	(13/22 15:25 Ma	atrix: Water			
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual		
200.8 MET ICPMS, Dissolved	•	Method: EPA 20 ytical Services	•		nod: EP	A 200.8					
Boron, Dissolved Calcium, Dissolved	9.5J 4280	ug/L ug/L	10.0 254	3.0 76.2	1 1	04/22/22 06:03 04/22/22 06:03	04/23/22 11:22 04/23/22 11:22				
2540C Total Dissolved Solids	•	Method: SM 25 ytical Services									
Total Dissolved Solids	32.0	mg/L	20.0	8.7	1		04/15/22 15:12				
300.0 IC Anions, Dissolved	-	Method: EPA 30 ytical Services									
Chloride, Dissolved Fluoride, Dissolved Sulfate, Dissolved	1.0J <0.095 2.1	mg/L mg/L mg/L	2.0 0.32 2.0	0.43 0.095 0.44	1 1 1		04/21/22 12:41 04/21/22 12:41 04/21/22 12:41	16984-48-8			
310.2 Alkalinity, Dissolved	•	Method: EPA 3									
			•								

QUALITY CONTROL DATA

Project: Q-6005-001031 WDS#3 CCR LANDFI

Pace Project No.: 40243379

Boron

Calcium

Date: 04/29/2022 02:16 PM

QC Batch: 413245 Analysis Method: EPA 200.8

QC Batch Method: EPA 200.8 Analysis Description: 200.8 MET

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40243379001, 40243379002, 40243379003, 40243379004, 40243379005, 40243379006, 40243379007

METHOD BLANK: 2379591 Matrix: Water

Associated Lab Samples: 40243379001, 40243379002, 40243379003, 40243379004, 40243379005, 40243379006, 40243379007

Blank Reporting Parameter Units Result Limit Analyzed Qualifiers <3.0 10.0 04/27/22 00:44 ug/L <76.2 254 04/27/22 00:44 ug/L

LABORATORY CONTROL SAMPLE: 2379592 Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers 235 94 85-115

Boron ug/L 250 235 94 85-115 Calcium ug/L 10000 10300 103 85-115

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2379593 2379594

MSD MS 40243384021 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual Boron ug/L 650 250 250 934 877 113 91 75-125 6 20 Calcium 239000 10000 10000 263000 253000 20 P6 ug/L 242 141 75-125

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2379595 2379596

MS MSD

40243469003 Spike Spike MS MSD MS MSD % Rec Max

Result Parameter Units % Rec % Rec **RPD RPD** Qual Conc. Conc. Result Result Limits Boron ug/L 608 250 250 860 854 101 98 75-125 20 Calcium ug/L 11500 10000 10000 21500 21800 100 103 75-125 20

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: Q-6005-001031 WDS#3 CCR LANDFI

Pace Project No.: 40243379

Date: 04/29/2022 02:16 PM

QC Batch: 413843 Analysis Method: EPA 200.8

QC Batch Method: EPA 200.8 Analysis Description: 200.8 MET Dissolved

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40243379008

METHOD BLANK: 2382886 Matrix: Water

Associated Lab Samples: 40243379008

Blank Reporting Qualifiers Parameter Units Result Limit Analyzed Boron, Dissolved <3.0 10.0 04/23/22 11:00 ug/L Calcium, Dissolved 77.4J 254 04/23/22 11:00 ug/L

LABORATORY CONTROL SAMPLE: 2382887

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Boron, Dissolved 250 234 94 85-115 ug/L Calcium, Dissolved 10000 9520 95 85-115 ug/L

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2382888 2382889 MS MSD 40243379008 Spike Spike MS MSD MS MSD % Rec Max RPD Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** Qual Boron, Dissolved ug/L 9.5J 250 250 240 240 92 75-125 0 20 Calcium, Dissolved 4280 10000 10000 13900 13800 97 96 75-125 20 ug/L 1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: Q-6005-001031 WDS#3 CCR LANDFI

Pace Project No.: 40243379

QC Batch: 413215 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40243379001, 40243379002

METHOD BLANK: 2379232 Matrix: Water

Associated Lab Samples: 40243379001, 40243379002

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Total Dissolved Solids mg/L <8.7 20.0 04/14/22 14:35

LABORATORY CONTROL SAMPLE: 2379233

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units **Total Dissolved Solids** mg/L 555 552 99 80-120

SAMPLE DUPLICATE: 2379234

40243282002 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers 572 **Total Dissolved Solids** mg/L 0 572 10

SAMPLE DUPLICATE: 2379235

Date: 04/29/2022 02:16 PM

40243380001 Dup Max RPD RPD Parameter Units Result Result Qualifiers Total Dissolved Solids 644 650 10 mg/L 1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: Q-6005-001031 WDS#3 CCR LANDFI

Pace Project No.: 40243379

QC Batch: 413332 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40243379003, 40243379004, 40243379005, 40243379006, 40243379007, 40243379008

METHOD BLANK: 2380052 Matrix: Water

Associated Lab Samples: 40243379003, 40243379004, 40243379005, 40243379006, 40243379007, 40243379008

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Total Dissolved Solids mg/L <8.7 20.0 04/15/22 15:10

LABORATORY CONTROL SAMPLE: 2380053

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units **Total Dissolved Solids** 555 510 92 80-120 mg/L

SAMPLE DUPLICATE: 2380054

40243353001 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers 602 **Total Dissolved Solids** 3 mg/L 620 10

SAMPLE DUPLICATE: 2380055

Date: 04/29/2022 02:16 PM

40243379003 Dup Max RPD RPD Parameter Units Result Result Qualifiers Total Dissolved Solids 118 mg/L 112 5 10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: Q-6005-001031 WDS#3 CCR LANDFI

Pace Project No.: 40243379

Date: 04/29/2022 02:16 PM

QC Batch: 413689 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions, Dissolved

> Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40243379008

METHOD BLANK: 2381918 Matrix: Water

Associated Lab Samples: 40243379008

Blank Reporting Limit Qualifiers Parameter Units Result Analyzed Chloride mg/L < 0.43 2.0 04/21/22 12:11 Fluoride mg/L < 0.095 0.32 04/21/22 12:11 Sulfate mg/L < 0.44 2.0 04/21/22 12:11

LABORATORY CONTROL SAMPLE: Spike LCS LCS

% Rec Limits Parameter Units Conc. Result % Rec Qualifiers Chloride mg/L 20 20.1 100 90-110 Fluoride mg/L 2 2.0 102 90-110 Sulfate 20 mg/L 20.5 103 90-110

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2381920 2381921

2381919

		40243384013	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	1.9J	20	20	24.1	24.3	111	112	90-110	1	15	MO
Fluoride	mg/L	0.59	2	2	2.7	2.7	103	106	90-110	2	15	
Sulfate	mg/L	25.5	20	20	47.6	47.7	110	111	90-110	0	15	M0

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: Q-6005-001031 WDS#3 CCR LANDFI

Pace Project No.: 40243379

QC Batch: 413592 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40243379001, 40243379002, 40243379003, 40243379004, 40243379005

METHOD BLANK: 2381444 Matrix: Water

Associated Lab Samples: 40243379001, 40243379002, 40243379003, 40243379004, 40243379005

Blank Reporting Qualifiers Parameter Units Result Limit Analyzed Chloride mg/L < 0.43 2.0 04/20/22 11:42 Fluoride mg/L < 0.095 0.32 04/20/22 11:42 Sulfate mg/L 2.0 04/20/22 11:42 < 0.44

LABORATORY CONTROL SAMPLE: 2381445

Date: 04/29/2022 02:16 PM

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L		19.4	97	90-110	
Fluoride	mg/L	2	1.9	97	90-110	
Sulfate	mg/L	20	19.5	97	90-110	

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 2381	446		2381447							
			MS	MSD								
		40243135008	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	23.5	20	20	45.5	45.4	110	110	90-110	0	15	
Fluoride	mg/L	<0.48	10	10	11.6	11.4	116	114	90-110	2	15	M0
Sulfate	mg/L	23.5	20	20	46.0	45.9	112	112	90-110	0	15	M0

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: Q-6005-001031 WDS#3 CCR LANDFI

Pace Project No.: 40243379

LABORATORY CONTROL SAMPLE:

Date: 04/29/2022 02:16 PM

QC Batch: 413946 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40243379006, 40243379007

METHOD BLANK: 2383815 Matrix: Water

Associated Lab Samples: 40243379006, 40243379007

Blank Reporting Limit Qualifiers Parameter Units Result Analyzed Chloride mg/L < 0.43 2.0 04/25/22 13:14 Fluoride mg/L <0.095 0.32 04/25/22 13:14 Sulfate mg/L < 0.44 2.0 04/25/22 13:14

Parameter Units Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers

Chloride mg/L 20 20.4 102 90-110 Fluoride mg/L 2 1.8 90 90-110 Sulfate 20 20.4 102 mg/L 90-110

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2383817 2383818

2383816

Parameter	Units	40243469001 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Chloride	mg/L	8.7	20	20	30.8	30.8	111	111	90-110	0	15	MO
Fluoride	mg/L	< 0.095	2	2	2.9	2.9	144	144	90-110	0	15	MO
Sulfate	mg/L	140	200	200	394	349	127	105	90-110	12	15	MO

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: Q-6005-001031 WDS#3 CCR LANDFI

Pace Project No.: 40243379

Date: 04/29/2022 02:16 PM

QC Batch: 413824 Analysis Method: EPA 310.2

QC Batch Method: EPA 310.2 Analysis Description: 310.2 Alkalinity

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40243379001, 40243379002, 40243379003, 40243379004, 40243379005, 40243379006, 40243379007

METHOD BLANK: 2382564 Matrix: Water

Associated Lab Samples: 40243379001, 40243379002, 40243379003, 40243379004, 40243379005, 40243379006, 40243379007

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Alkalinity, Total as CaCO3 mg/L <5.2 25.0 04/22/22 09:32

LABORATORY CONTROL SAMPLE: 2382565

Spike LCS LCS % Rec Conc. Result % Rec Limits Parameter Units Qualifiers Alkalinity, Total as CaCO3 100 96.7 97 90-110 mg/L

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2382566 2382567

MS MSD 40243379003 Spike Spike

MS MSD MS MSD % Rec Max Parameter Result **RPD** RPD Units Result Conc. Conc. Result % Rec % Rec Limits Qual 20 Alkalinity, Total as CaCO3 mg/L 73.7 200 200 277 278 102 102 90-110 0

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2382568 2382569

MS MSD 40243514015 MS MSD MS MSD % Rec Spike Spike Max RPD Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD Qual 200 Alkalinity, Total as CaCO3 66.7 200 273 272 103 103 0 20 mg/L 90-110

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: Q-6005-001031 WDS#3 CCR LANDFI

Pace Project No.: 40243379

QC Batch: 413665 Analysis Method: EPA 310.2

QC Batch Method: EPA 310.2 Analysis Description: 310.2 Alkalinity, Dissolved

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40243379008

METHOD BLANK: 2381700 Matrix: Water

Associated Lab Samples: 40243379008

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Alkalinity, Total as CaCO3, mg/L <5.2 25.0 04/21/22 12:50

Dissolved

LABORATORY CONTROL SAMPLE: 2381701

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Alkalinity, Total as CaCO3, mg/L 100 98.4 98 90-110

Dissolved

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2381702 2381703

MS MSD

40243336002 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD RPD Qual Alkalinity, Total as CaCO3, 200 285 97 20 90.5 200 288 99 90-110 mg/L

Dissolved

Date: 04/29/2022 02:16 PM

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2381704 2381705

MS MSD 40243381001 Spike Spike MS MSD MS MSD % Rec Max Parameter % Rec % Rec **RPD** RPD Units Result Conc. Conc. Result Result Limits Qual

Alkalinity, Total as CaCO3, mg/L 72.8 100 100 184 192 111 119 90-110 4 20 M0 Dissolved

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: Q-6005-001031 WDS#3 CCR LANDFI

Pace Project No.: 40243379

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above LOD.

J - Estimated concentration at or above the LOD and below the LOQ.

LOD - Limit of Detection adjusted for dilution factor, percent moisture, initial weight and final volume.

LOQ - Limit of Quantitation adjusted for dilution factor, percent moisture, initial weight and final volume.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected at or above the adjusted LOD.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 04/29/2022 02:16 PM

M0 Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.

P6 Matrix spike recovery was outside laboratory control limits due to a parent sample concentration notably higher than the spike level.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

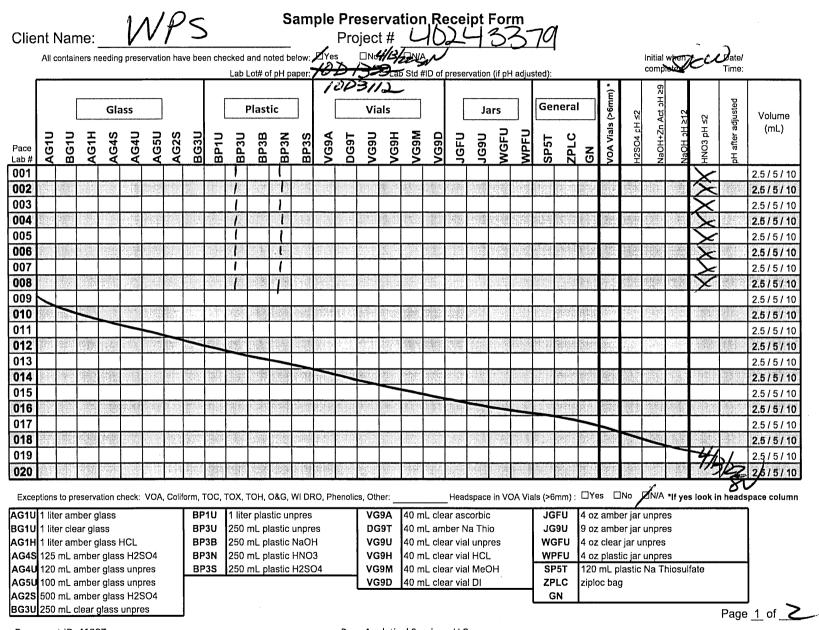
Project: Q-6005-001031 WDS#3 CCR LANDFI

Pace Project No.: 40243379

Date: 04/29/2022 02:16 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
40243379001	LS-100	EPA 200.8	413245	EPA 200.8	<u>413411</u>
40243379002	LS-101	EPA 200.8	413245	EPA 200.8	413411
40243379003	LS-105	EPA 200.8	413245	EPA 200.8	413411
40243379004	LS-106	EPA 200.8	413245	EPA 200.8	413411
40243379005	LS-107	EPA 200.8	413245	EPA 200.8	413411
40243379006	QA/QC1	EPA 200.8	413245	EPA 200.8	413411
40243379007	EB1	EPA 200.8	413245	EPA 200.8	413411
40243379008	LS-106 (HIGH TURBIDITY DUP)	EPA 200.8	413843	EPA 200.8	413901
40243379001	LS-100	SM 2540C	413215		
40243379002	LS-101	SM 2540C	413215		
40243379003	LS-105	SM 2540C	413332		
40243379004	LS-106	SM 2540C	413332		
40243379005	LS-107	SM 2540C	413332		
40243379006	QA/QC1	SM 2540C	413332		
40243379007	EB1	SM 2540C	413332		
40243379008	LS-106 (HIGH TURBIDITY DUP)	SM 2540C	413332		
40243379001	LS-100	EPA 300.0	413592		
40243379002	LS-101	EPA 300.0	413592		
40243379003	LS-105	EPA 300.0	413592		
40243379004	LS-106	EPA 300.0	413592		
40243379005	LS-107	EPA 300.0	413592		
40243379006	QA/QC1	EPA 300.0	413946		
40243379007	EB1	EPA 300.0	413946		
40243379008	LS-106 (HIGH TURBIDITY DUP)	EPA 300.0	413689		
40243379001	LS-100	EPA 310.2	413824		
40243379002	LS-101	EPA 310.2	413824		
40243379003	LS-105	EPA 310.2	413824		
40243379004	LS-106	EPA 310.2	413824		
10243379005	LS-107	EPA 310.2	413824		
10243379006	QA/QC1	EPA 310.2	413824		
40243379007	EB1	EPA 310.2	413824		
40243379008	LS-106 (HIGH TURBIDITY DUP)	EPA 310.2	413665		

CHAIN-OF-CUSTODY / Analytical Request Document


The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

942480 40243379

Section B Section C Section A Page: Required Project Information: Required Client Information: Invoice Information: Report To: Patrick Ahrens Attention: Accounts Payable WI Public Service Company: 333 W. Everett St. Copy To: We Energies Company Name: Address: REGULATORY AGENCY Address: 333 W. Everett St., Milwaukee, WI 532 Milwaukee, WI 53203 **NPDES** GROUND WATER x DRINKING WATER Pace Quote Purchase Order No.: 4700004930 Email To: patrick.ahrens@wecenergygroup.com UST **RCRA** OTHER Reference: Pace Project WDS#3 CCR Landfill - April 2022 Samples Phone: 414-221-2835 Fax: 414-221-4357 Brian Basten Site Location Manager: WI Requested Due Date/TAT: Project Number: Q-6005-001031 Pace Profile #: STATE: Requested Analysis Filtered (Y/N) TNX Section D Valid Matrix Codes C=COMP) COLLECTED Preservatives Required Client Information MATRIX CODE DRINKING WATER DW SAMPLE TEMP AT COLLECTION WATER COMPOSITE COMPOSITE END/GRAB CHLORIDE - unfiltered WASTE WATER ww (G=GRAB START SULFATE - unfiltered CALCIUM - unfiltered PRODUCT ORON - unfiltered SOIL/SOLID Other **LAnalysis Test** ees) OL WP SAMPLE ID WIPE AR AIR (A-Z, 0-9 / ,-) MATRIX CODE OTHER SAMPLE TYPE Sample IDs MUST BE UNIQUE Methanol $Na_2S_2O_3$ NaOH ITEM Pace Project No./ Lab I.D. DATE TIME DATE TIME 4-12 1146 LS-100 WT 0 100 G 1050 LS-101 6 0 WT G 2 2 _ 1226 LS-105 WT 6 0 2 3 1348 0 2 LS-106 WT G 6 4 1013 LS-107 0 2 WT G 6 QA/QC1 0 2 WT 6 G 1790 οĺ EB1 WT 6 7 G 5-106 (high turbidity dup 1348 2 0 9 10 11 12 **ADDITIONAL COMMENTS RELINQUISHED BY / AFFILIATION** DATE TIME **ACCEPTED BY / AFFILIATION** DATE TIME SAMPLE CONDITIONS 14/13/aa 16 Filterrd Please analyze selenium with method EPA 200.8 no folditional filtered analysis Sealed (Y/N) SAMPLER NAME AND SIGNATURE Received on Ice (Y/N) Temp in ° ples In (Y/N) PRINT Name of SAMPLER: Cody Applekantp DATE Signed SIGNATURE of SAMPLER: (MM/DD/YY):

DC# Title: ENV-FRM-GBAY-0035 v01 Sample Preservation Receipt Form

Revision: 3 | Effective Date: | Issued by: Green Bay

DC#_Title: ENV-FRM-GBAY-0014 v02_SCUR Revision: 3 | Effective Date: | Issued by: Green Bay

Sample Condition Upon Receipt Form (SCUR) Project #: WO#: 40243379 Client Name: Courier: ☐ CS Logistics ☐ Fed Ex ☐ Speedee ☐ UPS ☐ Waltco Client Pace Other: Tracking #: Custody Seal on Cooler/Box Present: ☐ yes 🏹 no Seals intact: ☐ yes ☐ no Custody Seal on Samples Present: yes Mino Seals intact: ☐ yes ☐ no Packing Material: ☐ Bubble Wrap ☐ Bubble Bags ☐ None ☐ Other Type of Ice: Wet Blue Dry None Samples on ice, cooling process has begun Thermometer Used Person examining contents: **Cooler Temperature** Biological Tissue is Frozen: yes no Temp Blank Present: Temp should be above freezing to 6°C. Labeled By Initials: Biota Samples may be received at ≤ 0°C if shipped on Dry Ice ŽYes □No □N/A Chain of Custody Present: ŽYes □No □n/a Chain of Custody Filled Out: ØYes □No □N/A Ιз. Chain of Custody Relinquished: Yes □No □n/a Sampler Name & Signature on COC: ✓Yes □No Samples Arrived within Hold Time: □Yes □No Date/Time: - VOA Samples frozen upon receipt □Yes ZNo Short Hold Time Analysis (<72hr): □Yes **Z**No Rush Turn Around Time Requested: Sufficient Volume: MS/MSD: □Yes □No □N/A For Analysis: ✓Yes □No ✓Yes □No Correct Containers Used: ØYes □No □N/A -Pace Containers Used: □Yes □No ÆN/A -Pace IR Containers Used: Yes DNo 10. Containers Intact: ZYes □No □N/A Filtered volume received for Dissolved tests 11. Yes □No **∕**□N/A 12. Sample Labels match COC: -Includes date/time/ID/Analysis Matrix: □Yes □No □**N**/A 13. Trip Blank Present: □Yes □No Trip Blank Custody Seals Present Pace Trip Blank Lot # (if purchased): Client Notification/ Resolution: If checked, see attached form for additional comments [Person Contacted: Date/Time: Comments/ Resolution: PM Review is documented electronically in LIMs. By releasing the project, the PM acknowledges they have reviewed the sample login

4-12-2022 CMA(REL) - License No: FID# 737054120 / ID# 03067

OS#3 Legner			License No:	FID# 73705412	0 / ID# 03067				
	Water Level	Date & Tir	me Sampled	Temperature (°C)	рН	Conductivity (uS/cm)	Turbidity (NTU)	Comments (odor, color, & Visual	
		21 15	_		5.72			•	
		1			5.95			cloudy	8
					7.58			claudy	
						99		cloudy	
		1		4 . 4		543		Clouder	·
LS-103P				R Well - All read		on Groundwate			
LS-101P	8.72		1640	8.7	6.72	64	270	brown cloudy	
LS-104	7.56		1300	6.3	5.94	34	yes	Cloudy	
LS-54 OW	1.29		1205	7.1	6.06	44	yes	brown clargy	
LS-54P	0.91		1220	8.3	6.78	157	no	Clear	
LS-49R	3-42		1446	6.7	5.85	224	10.45	clear final lawflow	readi
LS-100	6.71				lings are located	on Groundwate		ld Form	
LS-100P	8.79		1630	1.0	7.17	310			
LS-105		-							
		-							
				9.0	-			1-	
				5.0				1 1 1	
	1.1	1						1 2/4	
						- 3		0	
	5.79								
			0227	922	1229	186	222		
			()()	1204	18449	144	400		
	_		(WATER LEVEL ONLY	
				_					
	6.64		1		(344)	122			
	10.02	1000	() (:):				
LS-24P	12.12					****	***		
LS-40 OW	5.83					=4		WATER LEVEL ONLY	
			-		2 <u></u> 1	***			[
EB-1	2-								
EB-2 (if needed)	_		1000	9	(1)	B-2 vol	reedo	2	
SW-1	220	DR	/ No	> SAV	Pll-				
SW-2	++==	4-12	1705	9.7	6.67	82	2.0	Clear, taken from midd	le por
SW-3)	DRY	No	> 50m					
Leachate	1		1740	9.6	7.33	2080	No	clear	
Sample Point	Water		me Sampled	Temperature (°C)	pH	Conductivity (uS/cm)	Turbidity (NTU)	Comments (odor, color, & Visual Clarity)	
	Sample Point LS-102 LS-102P LS-10 OW LS-103 LS-103P LS-101P LS-104 LS-54 OW LS-54P LS-49R LS-100 LS-105 LS-106 LS-107 LS-105P LS-48R LS-48P LS-55 OW LS-55P LS-51 OW LS-52 OW LS-52 OW LS-52 OW LS-62P LS-16 OW LS-109 LS-	Sample Point Level	Sample Point Level Date & Til	Sample Point Level Date & Time Sampled	Sample Point Level Date & Time Sampled (°C)	Sample Point Level Date & Time Sampled C*C PH	Sample Point Level Date & Time Sampled PiH Conductivity (us/cm)	Sample Point Level Date & Time Sample Pi	Sample Point Level Date & Time Sampled Point Level Date & Time

Notes:
SW sample points = field conductivity, field pH, odor, color and turbidity (no sample submitted to lab)
Leachate Collection Tank is total (unfiltered)

Meter Calibration Notes: VSI ProDSS used for wells with NTU turbidity reading

Meter Calibration Notes: VSI phones are perfectly used for all others

Caleton pH, cond, temp "pen" used for all others

**Hooth calibrated 4-11-2022

Field Notes on Back of Sheet and/or in field book

SW-02 was collected at middle pord

LS-103 & 104 cracked puc well caps, reed replacements LS-52 & 107 protop loose

WELL DEVELOPMENT AND GROUNDWATER MONITORING FIELD FORM

)		S & S			,	1/10	875x			2/2	%	Tox No	2	۸ د سید	,	A5 251		1 / Wa) D	State Rose	1 miles	ヹ	-	- ·	}				3			J
		Time: 1249	Time: (34%)	PURGE INFORMATION	er X Pump]	Bladder QED				VOLUME CALCULATION AND PRODUCTION INFORMATION	Well Casing Borehole		feet	ons 3 Well Volumes: Gallons	10 Well Volumes: Gallons	Gallons	No	YSI Pro DSS	A CONTRACTOR OF THE STATE OF TH	ved Turbidity ORP	(NTU) (mV) Visual Clarity	35 480 126.8 red/bount fueld	1 151 107.9 Soun (letudy	0 120 102.7	349 111.3 Meany	205 120 brew	700	7.60	7	VIATIONS	Cond Actual Conductivity FT BTOC Feet Below Top of Casing SEC - Specific Electrical Conductance SU - Signaderd Units Temp - Temporature "C - Degrees Celcius	(- 6)
PROJECT INFORMATION	Client: WPSC	Start Date: 4-12-2022	Finish Date: 4-12-2022		Puroe Method: Bailer] g			de la company de	Stabilized Pumping Rate:	VOLUME CALCULATION A	Volume Calculation Type:	Volume Per Foot:	r) Standing Water Column:	1 Well Volume: Gallons	5 Well Volumes: Gallons	Total Volumes Produced:	Well Purged Dry?	Vater Quality Probe Type and Serial #	INDICATOR PARAMETERS	SEC or Dissolved	(SU) (us/cm)	(6.33 40 (gy 42	, 5,93 41 5,6	0 5.90 4.89	5.88 39 4.60	7 07	7 Q	5.85 40 4.0		EN-X	The state of the s
PROJECT		Task #:		EVENT TYPE	Well Development	ē		Other (Specify helper)			SUREMENTS	FINAL	Time Depth Time	(24-Hour) FT BTOC (24-Hour)		1245			1	WATER QUALITY	Depth to Drawdown Temp	(Feet)	7 0.93 Y	2 1.38	1,44	0.5 1.44 5.0		5.5	2	3	NOTES	1348 Smale Line	3 win due to los
田田 F	Site: WDS #3	۱"		WELL INFORMATION)	PO -67				Filter Pack Interval:	DEPTH MEASUREMENTS	INITIAL	Depth	FT BTOC (24	LNAPL	Groundwater 10,64		Casing Base	Water Level Serial #: Herron Dipper		Volume		1249	一本本!		1309	1312	1315 2.0	1318	1521			Known Skings

Well Development and Groundwater Monitoring Field Form

Well Development and Groundwater Monitoring Fleld Form MW-1

Page 1 of 2

Page 1 of 1

WELL DEVELOPMENT AND GROUNDWATER MONITORING FIELD FORM

									3	7		_							 , -	 _	-	
	Jug	348	THE RESIDENCE	11 020					Visual Clarity	propreleta	_3	(ight close	0					A			dion Potential Bi Conductance	
	Time:	Time:	TOTAL SERVICE					ORP		8.3	0,0	8.///	110.8	110.7	110.8	11.2	11.6	113.0		SNOI	ORP - Cordation-Reduction Potential SEC - Specific Electrical Conductance SU - Standard Units Temp - Temperature *C - Degrees Celcius	
					ling			Turbidity	(NTU)	200	55	95	64	59.10	52.78	49.61	16.89	49.16		ABBREVIATIONS		
)22	122	100	YPE	Low-Flow / Low Stress Sampling			Dissolved Oxygen	(mg/L)	4.0g	3,98	3.82	3.71	3.61	3.58	3.42 M	3.36 1	3.25/			Cond Actual Conductivity FT BTOC - Feet Below Top of Casing na - Not Applicable nm - Not Measured	
WPSC	4-12-2022	4-12-2022	+ +1.5-11.01	EVENI IYPE	Low-Flow / Lo	Other (Specify):	ERS (contin	SEC or Cond.	(ms/cm)	22	4	42	43	hh	45	do	47	118				
Client	Start Date:	Finish Date:	100 (8 di de d		×][TER QUALITY INDICATOR PARAMETERS (continued)	Hd	(NS)	5.83°	5,81	5.80	5.78	5,77	5.76	5.75	5,74	5,7,3		### 		
NO FOLLIN			The second second	10 TO 11 CO	nent	Approach Sam	INDICATOR	Temp.	(0.)	から	5,2	5.3	6.4	5.3	6.3	5.4	5.4	Siy			1	
	Tack #:	- day #-		10 10 10	Well Development	Well Volume Approach Sampling	ER QUALITY	Drawdown	(Feet)	1.48	1,48	1.48		_	_	_				(continued)	9	~ /w
		!	A THE			inches	WAT	Depth to Water	(Feet)	11,12	2121	(P'13				_	_			NOTES (c	(Z
#3	5484-033 Phase 4 RFI			MATION	501 57			Volume Removed	(gallons)	2.5		3.0				40					1348) -
WDS		.!		WELL INFORMATION	Well ID: (Casing ID:		Time	(military)	1324	1337	1330	1333	1.236	1239	1243	1245	1348				
#1	- died	Field Personnel:	000			O		Sampling	Stage	Hand								Sample		(4) (0) (0)		

WELL DEVELOPMENT AND GROUNDWATER MONITORING FIELD FORM

701-21	12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Time: 695%	Time: 1013		<u> </u>		3 saple	,	3	INFORMATION (45 F)	Borehole				Gallons						(my) Visual Clarity	W	276.K (lear	277.6	378.3	1 1	V 78.76	SN	ORP - Oxidalion-Reduction Potential SEC - Specific Electrical Conductance SL - Standard Units Town Transcriptor	o - Temperature Degrees Celclus	ock wells wow	Spiggt
ING FIELD FORM		Ë		PURGE INFORMATION	er 🛚 Pump		Bladder QED			AND PRODUCTION	Well Casing		feet		ns 10 Well Volumes:	Gallons		YSI Pro DSS			on lumbidity	1302	3.46	2.37	bire :	15	2,08	ABBREVIATIONS	ductivity low Top of Casing	ļ	HNO3	
WELL DEVELOPMENT AND GROUNDWATER MONITORING FIELD FORM	WPSC	4-12-2022	4-12-2022		Purge Method: Bailer	Bailer Type: n/a	Pump Type and Serial #:	Tube/Pump Intake Depth:	Stabilized Pumping Rate:	VOLUME CALCULATION AND PRODUCTION INFORMATION		oot:	er Column:	e: Gallons	es: Gallons		Ory? 🔲 Yes	r Quality Probe Type and Serial #	RAMETERS		Cond. Oxygen	 - 	0	3.18	216 1.14	1.1	213 1.16		Cond Actual Con FT BTOC - Feet Be ns - Not Applicable	חח - Nol Meesured	COUNT IMOSE-1	
T AND GROUNDY		Start Date:	Finish Date:		Purg				Stab	NOFILI	Volume Calculation Type:	Time Volume Per Foot:	(24-Hour) Standing Water Column:	1 Well Volume:	5 Well Volumes:	Total Volumes Produced	Well Purged Dry?	Water Quality Probe T	Y INDICATOR PARAMETERS		lemp dme	2	7 5.55	7 5.55	7 5.56	7 5.57	7 557		2		***************************************	
L DEVELOPMENT A	PONT	Task#:		EVENT TYPE	Well Development			Other (Specify below)		S	FINAL	Depth Tir	FT BTOC (24-h						WATER QUALITY IN			7 [80		1 5	1	·S ~	<i>S</i> : <i>⊗</i>	NOTES	South Hard	,) 4/		
WEL		Phase 4REL		2	7	Inches	-	Inches		DEPTH MEASUREMENTS	AL.	Time	(24-Hour)		6952			Herron Dipper T		_	ved Water	Y) - - -		-	>	7	ON	1012			:
	WDS #3	5484-033	CMA	WELL INFORMATION	Well ID: LS- LD		ilval:	leter:	nval:		INITIAL	Depth	FT BTOC		5,43					_	<u></u>	(military) (gallons)	2000	200	100	2110	1013	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
	Site	Project Number	Field Personnel:	WEI	Me	Casina ID:	Screen Interval	Borehole Diameter:	Eilter Dack Interval					LNAPL	Groundwater	DNAPL	Casing Base	Water Level Serial #:			D		+	o Dina		CO SOURCE						

Page 1 of

WELL DEVELOPMENT AND GROUNDWATER MONITORING FIELD FORM

/ 2 2 7	-) ()		12 4 75 C	365		*/0/2/						17.00 17.01	2 2 8	0) or comp (0)						1000			arity	Variation of	1		11/2 14/3+ 11/2-K	June to Slower	Perhang 4	John Cheech			
		1038	(650							ORMATION		Borehole			Gallons	Gallons							NSIA AISI	7.0 (100~	63.6	5.4	2,7	7.4	7,5 \			C	Untra-Voording Publication Proteining SEC - Specific Conductance SU - Standard Units Temp - Temperature *C - Degrees Celcius
		Time:	_ Time:	TION	ф					IN INC		<u></u>			nes:	nmes:				Total March		<u>5</u>	E (47	26	365	266,	267.	267		- Cit	AIIONS	SEC - Specific Electrics SU - Standard Units Tamp - Temperature Celotius
				PURGE INFORMATION	dwnd 🔀		Bladder QED			PROPILICA	2000	Well Casing		feet	3 Well Volumes:	10 Well Volumes:	Gallons	8	Pro DSS	1 (b) 10 (c)		Turbidity	(NTU)	8.47	5.99	7.35	6.58	6,90	6.86		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ABBREVIATIONS	v Top of Casing
		122	022	PURGE	☐ Bailer			Denth:	Date:	MOLITIME CALCILI ATION AND PRODUCTION INFORMATION		Mell			Gallons	Gallons	ř	Yes	al# YSI		Dissolved	Oxygen	(mg/L)	12.57	13.92	12.93	12,95	12.95	13.94				Cont Actual Conductivity FT BTCC Feet Below Top of Casing in - Not Applicable im - Not Measured
	WPSC	4-12-2022	4-12-2022		Purge Method:	Bailer Type: n/a	Pump Type and Serial #:	Tuhe/Pump Intake Depth	Stabilized Bumping Bate:	ILE CALCILL	וו כאורס	ation Type:	oot:	r Column:		.;;	Produced:	lry?	ype and Seri	AMETERS	SEC or	Cond.	(ms/cm)	33	30	W	31	3/	31				
PROJECT INFORMATION	Client:	Start Date:	Finish Date:	D. S.	Purge				idoto	NO LIN	VOLON	Volume Calculation Type:	Volume Per Foot	Standing Water Column:	1 Well Volume:	5 Well Volumes:	Total Volumes Produced	Well Purged Dry?	Quality Probe Type and Serial #	WATER QUALITY INDICATOR PARAMETERS		玉	(SU)	10.0	5.68	5,68	5,66	5,66	5,66			et aleks	-
PROJECT IN				EVENT TYPE	ment	Low-Flow / Low-Stress Sampling	Well Volume Approach Sampling	المراصر	(MOID)		975 H		Time	(24-Hour)					Water	UALITY INDI		Temp	(၁)	5.4	5.3	52	5.2	5,2	5,3				,
		Task #:		EVE	Well Development	Low-Flow / Lo	Well Volume	Other /Specific	Outel (specify below)			FINAL	Depth	FT BTOC						WATER		Drawdown	(Feet)	*	0.09				M			NOTES	time
		田				Inches		1	saucues	Tivilian	DEPIH MEASUREMENIS		Time	(24-Hour)		7034			per T		Depth to	Water	(Feet)	8.45	8,54	15.8	-		>			N	mple 1
		33 Phase 4REL	10	MATION	- L					A THE LITTLE A	EPIH MEA	INITIAL				l			Herron Dipper T		Volume	Removed	(gallons)		0,5				0,			1	5 Q
	Site: WDS #3	er: 5484-033	CMA	WELL INFORMATION	Well ID:		ortendal:	lici vai.					Depth	FT BTOC		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	L		erial #:			Time	(military)	(SS)	1038	1501	hhol	Lh0	050	Y			0501
Ž	I.S.	Project Number:	Field Personnel	M		, K	Screen Interval		Borenole Diameter.	Filter Pack Interval:					LNAPL	Groundwater	DNAPL	Casing Base	Water I evel Serial #:			Sampling	Stage	initial	ebind				Somole				

Page 1 of

WELL DEVELOPMENT AND GROUNDWATER MONITORING FIELD FORM

(101-7)		TOP + SK SW		7			10/2)		750 251								11					T				T	T	1	Т			1
OKIN		Time: (13)	Time: 1146	MOILLY	dwn					TION INFORMATION	Borehole				olumes: Gallons				The state of the s		ORP	(mV) Visu	3/10	974	213.4		7 415	2/4 3	274	SI CILLO	ABBREVIALIONS	ORP - Oxidation-Reduction Potential SEC - Specific Electrical Conductance SU - Standard Units Temp - Tempperature	C-Degrees celcius
MONI ORING FIELD F	O	4-12-2022	4-12-2022	PURGE INFORMATION	Bailer X Pump	/a	d Serial #: Bladder QED	ake Depth:	ping Rate:	VOLUME CALCULATION AND PRODUCTION INFORMATION	e: Well Casing			Gallons 3 Well Volumes:	Gallons 10 Well Volumes:		Yes No	Serial # YSI Pro DSS	SS	Dissolved	Oxygen	(mg/L) (N	9 Q	4.97 2.24	η -	8	4.11 3.43	0,	0,0	000	ABBRE	Cond Actual Conductivity FT BTOC - Feet Below Top of Casing na - Nol Applicable nm - Not Measured	
ND GROUNDWATER I	Client: WPSC				Purge Method:	ampling Bailer Type: n/a		Tube/Pump Intake Depth:	Stabilized Pumping Rate:	VOLUME CALC	Volume Calculation Type:	Volume Per Foot:	Standing Water Column:	1 Well Volume:	5 Well Volumes:	Total Volumes Produced	Well Purged Dry?	er Quality Probe Type and Serial #	WATER QUALITY INDICATOR PARAMETERS	SEC or	pH Cond.	(SU) (US)	5,60 (36	5.63 128	5.62 130	1	73	60	15/	>,60			
WELL DEVELOPMENT AND GROUNDWATER MONTORING FIELD FORM PROJECT INFORMATION		Task#:		EVENT TYPE	Well Development	☐ Low-Flow / Low-Stress Sampling		Other (Specify below)		NTS	FINAL	Depth Time	FT BTOC (24-Hour)					Water	WATER QUALITY IN	-	. Drawdown Temp	(Feet) (°C)	4 - 5.5	1 0.08 4.7		7.15	6.6	9.9	4.8	W 14.8	NOTES	Don't	
M		Phase 4RE		NOITA	{	Inches		Inches		DEPTH MEASUREMENTS	INITIAL	Time	(24-Hour)		7			Herron Dipper T		Volume Depth to	-	(gallons) (Feet)	(0,7	1.0 6.79	6.7		30			3.0		Manuell	
	Site: WDS #3	5484-033	CMA		Well D.		Screen Interval:	Borehole Diameter:	Filter Pack Interval:			Depth	FT BTOC	LNAPL	Groundwater (0.7)	1	Casing Base	erial #:			Sampling Time F		Initial 1131			(138	0111	(143	1 44	50mg/2 11460	9.00	9)111	3

5
<u> </u>
Ξ.
긆
II.
Ž
8
늘
MON
2
Ψ
NDN
3
SRO
D D
A
Z
뿔
9
ÁĘ,
WELL DEVELOPMENT AND GROUNDWATER MONITORING FIELD FORM
1
WE

	C) 0S		ハクトンなれ) }				15/	V-6-			(AS 251																				
			55	336							TION				Gallons	Gallons				a Call Magazine man		Visual Clarity	(00)							Carried March	Things have 1	al Conductance	
5			Time:	Time:	NC						VOLUME CALCULATION AND PRODUCTION INFORMATION	Borehole			:ii	es:					000		Ţ	61-	-4.6	-6.6	-7.8	-8.6			SNOL	ORP - Oxidation-Reduction Potential SEC - Specific Electrical Conductance CLL Clanderd Units	Temp - Temperature *C - Degrees Celclus
IELD FOR					PURGE INFORMATION	M Pumb		Bladder QED			RODUCTIO	Casing [feet	3 Well Volumes:	10 Well Volumes:	Gallons	No	rsi Pro DSS			unbiany	10.09	1,93	1,69	89	1.63	1,65			₹		9
IITORING F			2	22	PURGE II	Bailer			epth:	Rate:	TION AND P	Well Casing			Gallons 3	Gallons 1		Yes			Dissolved	Oxygen	1,0%	0.30	0.17	0.13	ن ن الط	0.13				Cond Actual Conductivity FT BTOC Feet Below Top of Casing	na - Not Measured
ATER MON		WPSC	4-12-2022	4-12-2022		Purge Method:	Type: n/a	Pump Type and Serial #:	Tube/Pump Intake Depth:	Stabilized Pumping Rate:	E CALCULA	ition Type:	ot:	. Column:			Produced:		Quality Probe Type and Serial #	METERS	SEC or	e e	(µs/cm)	400	hoe	304	205	305				O IL	
GROUNDW	FORMATION	Client:	Start Date:	Finish Date:		Purge	ing Bailer Type:		Tube/	Stabili	NOTON	Volume Calculation Type:	Volume Per Foot:	Standing Water Column:	1 Well Volume:	5 Well Volumes:	Total Volumes Produced	Well Purged Dry?	uality Probe Ty	ATOR PARA		E :	(50)	7.87	5.87	5.87	5.87	5.87				-	
IENT AND	PROJECT INFO		-		TYPE	ent	-Stress Sampl	proach Samp	ow)			>	Time	(24-Hour) S		5		<u> </u>	Water Qu	ALITY INDIC	9	dwa	(2)	200	2.3	2.8	8	1."])
WELL DEVELOPMENT AND GROUNDWATER MONITORING FIELD FORM	PR		Task #:		EVENT	Well Development	Low-Flow / Low-Stress Sampling	Well Volume Approach Sampling	Other (Specify below)		No. of the last	FINAL	Depth	FT BTOC						WATER QUALITY INDICATOR PARAMETERS		Drawdown	(Feet)	0.03	20.0			1	•		ES	7	
WELL							Inches		Inches		JREMENTS		Time	(24-Hour) F		hot			er T	THE RESERVE AND ADDRESS OF THE PARTY OF THE	Depth to	Water	(Feet)	200	2.9			>			NOTES	, Jan .	}
			Phase 4RE		ATION	(0.5/			Ü		DEPTH MEASUREMENTS	INITIAL				11			Herron Dipper T		Volume	Removed	(gallons)		?	ò	5	2.5			1 () () () () () () ()	100	1. 20 se.
		. WDS #3		1		Well ID: LS-		terval:	meter:				Depth	FT BTOC		3.89			rial #:			Time	(military)	0000	1230	500	1930	1236			10/4/3	,	
	100	atis	Droipet Mumber	Field Personnel:	WE	M	Casi	Screen Interval:	Borehole Diameter:	Filter Pack Interval:					LNAPL	Groundwater	DNAPL	Casing Base	Water Level Serial #:			Sampling	Stage	initial	bnrge			Sample					

Well Development and Groundwater Monitoring Field Form

aid Form	
r Monitoring Field Form	
roundwater	
pment and G	
Well Davelo	MW-1

			WEL	WELL DEVELOPMENT AND	MENT AN		NATER MO	NITORING	GROUNDWATER MONITORING FIELD FORM	N.		\
			411 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<u> </u>	ROJECT IN	PROJECT INFORMATION			17.4		7.4 5 S	J 1/9 D
Site:	. WDS #3					Client:	WPSC					こってい
Project Number		Phase 4B	原	Task#:		Start Date:	4-12-2022	122		Time:	118	118 500
Field Personnel:	1					Finish Date:	4-12-2022	022		Time:	du Co	から
WE	WELL INFORMATION	VIION		EVENT	IT TYPE		III IVE III III III III III III III III	PURGE	PURGE INFORMATION	NO		
W	Well ID: LS-	49R		Well Development	nent	Purg	Purge Method:	Bailer	M Pump	Ω.		
Casir	Casing ID:		Inches	Low-Flow / Low-Stress Sampling	v-Stress San		Bailer Type: n/a					(
Screen Interval:	erval:			Well Volume Approach Sampling	pproach Sar		Pump Type and Serial #:	'	Bladder QED			1750
Borehole Diameter:	neter:	1	Inches	Other (Specify below)	elow)	Tube	Tube/Pump Intake Depth:	Depth:				
Filter Pack Interval:						Stab	Stabilized Pumping Rate:	g Rate:				of the state of th
		TH MEA	DEPTH MEASUREMENTS	TS		NOLUI	ME CALCUL	ATION AND	VOLUME CALCULATION AND PRODUCTION INFORMATION	ON INFORMA	ATION	1 t event
		INITIAL		FINAL		Volume Calculation Type:	lation Type:	Mel	Well Casing	Borehole		Ś
	Depth		Time	Depth	Time	Volume Per Foot:	oot:					4
	FT BTOC		(24-Hour)	FT BTOC	(24-Hour)	Standing Water Column:	er Column:		feet			, 50,
LNAPL						1 Well Volume:	ö	Gallons	3 Well Volumes:	3S:	Gallons	120
Groundwater	2,42	5	1413			5 Well Volumes:	es:	Gallons	10 Well Volumes:	nes:	Gailons	
DNAPL						Total Volumes Produced:	s Produced:		Gallons			
Casing Base						Well Purged Dry?	Dry?	Yes	S _N			
Water Level Serial #:		Herron Dipper T	oper T		Water	Water Quality Probe Type and Serial #	Type and Seria		YSI Pro DSS			
		7	A STATE OF THE STA	WATER QL	JALITY IND	WATER QUALITY INDICATOR PARAMETERS	RAMETERS	2			The second second	
		Volume	Depth to	d	i i	7	SEC or	Dissolved	H Spiding P	ORP		
Sampling		Kemoved	Water	Drawdown	d E E	Ed Vie	(ris/cm)	(mg/l)	ONTIN	(m)	Visual Clarity	
otage	(military)	(gallons)	20 C	0.09	7.3	5.79	203	2.25	7.69	(31.6	ررهم	
onrae	1428		3.70	0,38	7.0	5.82	230	0.38	11	(70,3	Claraby	
	1841		3.82	040	8.9	5.84	230	0.34	8.31	176.5		
	1434		- 0	_	9	5.85	229	0,8	(0'h/	178.7	*	
y	1437				0	5.85	2330	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	14.04	1/8:0	3	
0	0.55		3.80	0.43	8.00	5.85	1200	92	13.73	(10.0)	-	
100	244.5		200 6	///	10	787	200	V	10.45	1647	,	
Serior	0251		9	NOTES	9	2017	1.022		ABBREVIATIONS	TIONS		
				OLES				Cond Actual Conductivity	ctivity	ORP - Oxidation-Reduction Potential	ction Potential	
	944/	S	D	t sydne t	See			FT BTOC - Feet Below Top of Casing na - Not Applicable nm - Not Measured	w Top of Casing	SEC - Specific Electrical Conductance SU - Standard Units Temp - Temperature	cal Conductance	
	-)	-						-C - Degrees Celcius		

84246

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Pace Analytical

State

Pace Project No./ Lab I.D. Samples Intact (N/Y) **DRINKING WATER** SAMPLE CONDITIONS T Cooler (Y/N) OTHER ŏ Received on Ice (Y/N) GROUND WATER Residual Chlorine (Y/N) D° n qmeT Page: REGULATORY AGENCY ₹ RCRA TIME Requested Analysis Filtered (Y/N) 11.3130 STATE Site Location ☐ NPDES DATE Hardness - Calcualted UST Magnesium - Filtered × × L × × × Calcium - Filtered × × × × > Molybdenum - Filtered × × DATE Signed (MM/DD/YY): ACCEPTED BY / AFFILIATION 3oron - Filtered × × × × × × × × Sulfate - Filtered × Alkalinity - Filtered >-Analysis Test Company Name: WEC Energy Group N/A Other Accounts Payable Approxame Methanol Brian Baesten Preservatives Na₂S₂O₃ HOBN IOH Invoice Information HNO3 [⊅]OS^ZH Pace Quote Reference: Pace Project Manager: Pace Profile #: Section C Unpreserved -TIME tention Address: 2 2 2 2 N N # OF CONTAINERS SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: SIGNATURE of SAMPLER: SAMPLE TEMP AT COLLECTION DATE 4-13-×280 1410 155 8 17 TIME COMPOSITE END/GRAB Project Number Licence #03067, FID#737054120 マーナ DATE COLLECTED RELINQUISHED BY / AFFILIATION Project Name: Weston Disposal Site #3 TIME COMPOSITE START Purchase Order No. 4700004930 DATE Report To: Patrick Ahrens Required Project Information O O ပ O O O G O O O U GW G SAMPLE TYPE (G=GRAB C=COMP) GW (see valid codes to left) MATRIX CODE Section B Copy To Valid Matrix Codes Š W W DRINKING WATER WATER WASTE WATER WASTE WATER PRODUCT BOOLISOLID patrick ahrens@wecenergygroup.com Fax: (414) 221-4357 OIL WIPE AIR OTHER TISSUE -S-102P LS-103P LS-101P LS-104 LS-54P LS-100 LS-10 LS-54 LS-49R LS-103 LS-101 ADDITIONAL COMMENTS (A-Z, 0-9 / ,-) Sample IDs MUST BE UNIQUE Milwaukee, WI 53203 333 W. Everett Street WEC Energy Group SAMPLE ID Required Client Information Required Client Information: hone: 414-221-2835 Requested Due Date/TAT Section D Section A ompany: mail To ddress 9 Ŧ 4 ~ m 4 K 6 -8 a # WHI

important Note. By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any invoices not paid within 30 days

F-ALL-Q-020rev 08, 12-Oct-2007

CHAIN-OF-CUSTODY / Analytical Request Document

4452Ab

The Chain-of-Custody is a LEGAL DOCUMENT, All relevant fields must be completed accurately,

DRINKING WATER OTHER State GROUND WATER Page: REGULATORY AGENCY ₹ RCRA STATE: Site Location NPDES UST Company Name: WEC Energy Group Accounts Payable Race Project Brian Baesten Invoice Information: Section C Address Project Number: Licence #03067, FID#737054120 Project Name: Weston Disposal Site #3 Purchase Order No.: 4700004930 Report To: Patrick Ahrens Section B Required Project Information: Copy To: patrick ahrens@wecenergygroup com Fax: (414) 221-4357 Pace Analytical" Milwaukee, WI 53203 333 W Everett Street WEC Energy Group Section A
Required Clent Information.
Company: WEC Energy hone: 414-221-2835 Requested Due Date/TAT: mail To Address:

				Pace Project No./ Lab I.D.		6			4							SAMPLE CONDITIONS				
1						7	1 mc		SWIC	,						S				
I			(N/Y) əi	Residual Chlorin	Z	0	7						-	+	+		6	7		
							Č										0			
١	3						2								1	TIME	3			
ł	pare				Н	-	-	1							+		125			-
ı	F	>	charted	Hardness - Cal	×	×	*	k	×	×	×	×	×	×	×	DATE	4181H			
	ysis	>		Aagnesium - F	×	×	*	k	×	×	×	×	×	×	×	2	E			
	Anal	>		Calcium - Filter	×	×	×	×	×	×	×	×	×	×	×		0			
1	ted,	>-		Molybdenum - I	×	×	×	×	×	×	×	×	×	×	×	z	race			
	Requested Analysis Filtered (Y/N)	>		Boron - Filtered	×	×	K	K	×	×	×	×	×	×	×	ATIO	10			
	Rec	> >		Alkalinity - Filtere Sulfate - Filtere	×	×	×	K	×	×	×	×	×	×	×	FPL	1)	()		
		↑N/A		Alkalipiby Filton	1		+	1			ا		Į.	IK I	-	ACCEPTED BY / AFFILIATION	0			
-				Other				1							T	TED 1				
		(0)		Methanol			1									CEP	1			
		Preservatives		HOaN sO _s S _s bN											-	- A	1			
		serve		HCI			1										1			
		Pres		^E ONH	-	-	+	+	-	-	-	-	-	-	-		1			
				H ^S 2O ⁴			1									ш	2			
				Unpreserved	7	1	1	1	1	1	7	2 1	7	7	7	TIME	1525			
۱				# OF CONTAINER	2	2	1	1	2	2	2	2	2	7	2					
			COLLECTION	TA 9MBT BJ9MAS		170	1				1			0		_ <u>u</u>	3-3		1	
				TIME	20	0		1	107	27.5	5	1	1	1		DATE				
			COMPOSITE END/GRAB		-		1	+	-	-	1		L	of the last	1	-	57			
١		TED	COMF END/	DATE	でーナ	-			_	-	-	-			-		ZEL			
		COLLECTED			か									-		NO	1			
		COLL	ART	TIME	-	1	ī	1	I	q	7	ì	ŧ		-	RELINQUISHED BY / AFFILIATION	W			
			SITEST						,		3	(1	g g	1	AFE	1	1		3
			COMPOSITE START	DATE	事	E	31	1	1	1	î		į	1		DBY				
			O		Н			10				1	,	1	1	ISHE	1	1		
		(AMC))=) BARÐ=	S) BAYT BJAMAS	0	0	0	0	O /	0	0	O /	o /	0 /	0	NON	1	-		
		(ñal of	see valid codes	MATRIX CODE	GW	GW	GW	GW	GW	GW	GW	GW	GW	GW	GW	REL	2	1		
		ш											· V				1-2			
		odes	WW WW	AN TO TS											7			7		
		Valid Matrix Codes	ER TER												EBS NO SAMPLE					
		Valid Mat	IKING W TER STE WA IDUCT JSOLID	WIPE AIR OTHER TISSUE											50	111			1	
		Val	WAS WAS PRO SOIL	AIR OTH TISS	٦	10	1	1	Д	~	0	_	2		20					
				SUE	LS-100P	LS-105	4	4	LS-105P	LS-48R	LS-48P	QA/QC1	QA/QC2	EB1	20	ENT				
					LS	LS	-LS 406	16 107	LS-	LS	LS	Q	Q	Ш	4	OMM				
		ation	ı	Sample ID (A-2, 0-91) Sample IDs MUST BE UNIQUE			1	•								ADDITIONAL COMMENTS				
		Inform		3 MUS												OTH	200.7			
		D		X >> 30 aic												A	I EPA			
		Section D Required Client Information		Samp												13	Please use mrlhed EPA 2007			
		Se								111							a use i			
1				# MƏTI	-	~	6	4	ro.	9	7	80	6	우	=	5	lease			
Į								100												

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT, All relevant fields must be completed accurately

Pace Project No./ Lab I.D. Samples Intact (V/V) DRINKING WATER SAMPLE CONDITIONS 1 Cooler (Y/N) OTHER Sustady Sealed ₽ Ice (Y/N) Received on GROUND WATER Residual Chlorine (Y/N) O° ni qmaT Selenium - Total z Page: 3 REGULATORY AGENCY z Manganese - Total RCRA TIME Z ead - Total lstoT - muimbeC × Z Requested Analysis Filtered Molybdenum - Total z STATE Site Location DATE NPDES z Soron - Total 13 UST z Sulfate - Total 1000 Chloride - Total z Alkalinity - Total Z ACCEPTED BY / AFFILIATION z COD z 30D LSS Z TN/A LAnalysis Test WEC Energy Group Other Accounts Payable Methanol Brian Baesten Na₂S₂O₃ Preservatives HOBN HCI [€]ONH Company Name: DS2H Section C TIME Unpreserved Attention \ddress: 2 # OF CONTAINERS SAMPLER NAME AND SIGNATURE SAMPLE TEMP AT COLLECTION TIME 1650 C. COMPOSITE END/GRAB Licence #03067, FID#737054120 10/4/4720 3-13 DATE COLLECTED 1 RELINQUISHED BY / AFFILIATION Weston Disposal Site #3 TIME COMPOSITE START Purchase Order No.: 4700004930 DATE Report To. Patrick Ahrens Required Project Information O SAMPLE TYPE (G=GRAB C=COMP) GW roject Number: MATRIX CODE (see valid codes to left) roject Name: Section B Copy To: Valid Matrix Codes SI OL OL OL OT OT OT OT OT OT OT OT OT DRINKING WATER WATER WASTE WATER WESDUCT BRODUCT SOIL/SOLID patrick ahrens@wecenergygroup.com Fax: (414) 221-4357 ADDITIONAL COMMENTS 노 (A-Z, 0-9 / ,-) Sample IDs MUST BE UNIQUE Milwaukee, WI 53203 333 W. Everett Street WEC Energy Group SAMPLE ID Required Client Information Section A Required Clent Information: none: 414-221-2835 Requested Due Date/TAT Section D ddress: 우 ÷ 2 ro. 9 00 0 N 63 4 # MHTI

56

3

1-12

DATE Signed (MM/DD/YY):

PRINT Name of SAMPLER: SIGNATURE of SAMPLER:

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT, All relevant fields must be completed accurately,

Pace Project No./ Lab I.D. Samples Intact (Y/N) DRINKING WATER SAMPLE CONDITIONS Custody Sealed Cooler (Y/N) OTHER Ice (Y/N) Received on GROUND WATER Residual Chlorine (Y/N) J. ul qmaT Page: REGULATORY AGENCY ₹ RCRA z 200 TIME Requested Analysis Filtered (Y/N) z z z Site Location STATE: De DATE NPDES z UST nh Hardness - Calculated z z (MM/DD/YY): Nagnesium - Total ACCEPTED BY / AFFILIATION z Calcium - Total z ron - Total z Mercury - Total Analysis Test Company Name: WEC Energy Group N/A **1941**C Accounts Payable Methanol Brian Baesten Preservatives _EO_sS_sbN HOBN HCI [€]ONH Invoice Information DS2H とかい Reference:
Pace Project
Manager
Pace Profile # Section C TIME Unpreserved Attention Address: S # OF CONTAINERS SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: SIGNATURE of SAMPLER: SAMPLE TEMP AT COLLECTION 4-13-7 DATE 1740 TIME Licence #03067, FID#737054120 DATE COLLECTED RELINQUISHED BY / AFFILIATION Weston Disposal Site #3 TIME COMPOSITE START Purchase Order No.: 4700004930 DATE Report To: Patrick Ahrens Required Project Information O SAMPLE TYPE (G=GRAB C=COMP) GW Project Number MATRIX CODE (see valid codes to left) Project Name: Section B Copy To: Valid Matrix Codes WW WW DRINKING WATER WATER WASTE WATER PRODUCT SOIL/SOLID patrick ahrens@wecenergygroup.com Fax: (414) 221-4357 OIL WIPE AIR OTHER TISSUE ADDITIONAL COMMENTS H (A-Z, 0-9 / ,-) Sample IDs MUST BE UNIQUE Milwaukee, WI 53203 333 W. Everett Street WEC Energy Group SAMPLE ID Required Client Information Required Client Information: 414-221-2835 Requested Due Date/TAT Section D company. :mail To: hone Address 9 00 6 9 F 4 N ц က TEM #

CHAIN-OF-CUSTODY / Analytical Request Document
The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

The Partick Ahrens Payable Pay	Section Comparison Section	™			DRINKING WATER	отнек					O Human 33	Pace Project No./ Lab I.D.											SAMPLE CONDITIONS				ealed V/N) Intact	
The Patrick Aircrast	Section B Sect	-			×	J					50	Pace											SAMP					
The Patrick Aircrast	Section B Sect	age:			VATER						(N/Y) 9i	Residual Chlorin												3			Э.	
The Patrick Aircrast	Section B Sect	<u>a</u>		<u></u>	JOND	4	5	5					×	×	~×	×	×	×	×	+		#						
The company Name Note	Seeling Seel			SEN	GRO	RCR	2	>	X/N	**			-×	×	×	-×-	×	~	~	1			I WE	S. C.	5			
The company Name Note	Seeling Seel			Y AC				_) pe				×	×	×	×	×	~	×	1				13)			
The company Name Note	Seeling Seel			I OF	SH		atton	ATE:	Filte				×	×	×	×	~	×	×		\vdash	+	H				= 1	
The company Name Note	Seeling Seel			1	NPD	UST	Loc	ST		_				_	-	-	-+	-	-		H	T	Ď	119	7			
To Patrick Ahrens Section	Section B			REG			Ste		Amail					×	×	×	×	×	×	1_								
To Patrick Ahrens Section	Section B				532				ted,	_			-	-	-	-	-	-	-	7			Z	4	3			
To Patrick Ahrens Section	Section B				W.				sent	_				-	-	-	-	-	-	2000			IATIC	F	Ju.			
Time	Section Care National Project Information: Section Care National Project Information: Section Care National Project Information: Account Report To: Patrick Ahrens Account Account Copy To:				nkee				Rec		peretlita		_	_	-	_	\rightarrow	-	-	de-	H		AFFIL	2				
Trick Ahrens	Section C Sect				Ailwa						13		5				Ü			NI I				1				
Trick Alvens Name Note	Project Name: WID S#3 CCR Landfill - April 2022 Samples Project Name: WID S#3 CCR Landfill - April 2022 Project Name: WID S#3 CCR Landfill - April 2022 Project Name: WID S#3 CCR Landfill - April 2022 Project Name: WID S#3 CCR Landfill - April 2022 Project Name: WID S#3 CCR Landfill - April 2022 Project Name: WID S#3 CCR Landfill - April 2022 Project Name: WID S#3 CCR Landfill - April 2022 Project Name: WID S#3 CCR Landfill - April 2022 Project Name: WID S#		9	S	St. N																		PTED	0				
Trace	Project Information		ayab	ergie	rett :		<u></u>			SS						-	-	\dashv	+	-	+	-	ACCE					
True Patrick Ahrens	Purchase Order Name Company Name		ts P	Ene	Eve		aste			ative									1					1			H	
True Patrick Ahrens Invoice Information: Invoice Information	Copy 10. Patrick Ahrens Company Name Copy 10.		cour	We	3 W		an B			sen														19	4			
TTO: Patrick Ahrens TTO: P	Required Project Information: Report To Patrick Ahrens Project Number	nation	Ac	 E	33		Bij			Pre			_			_	\rightarrow	-	-	+	\vdash	+	-	1)	-	+		
TTO: Intered Project Information:	Required Project Information: Report To: Patrick Ahrens Copy To: Purchase Order No.: 4700004930 Project Number: Q-6005-001031 Project Number: Q-6005-001031 Societa Strait With G Composite Composite Composite Strait With G Composite Composite Composite Composite Strait With G Composite Composite Composite Strait With G Composite Compo	Inform	ë	y Na	ió	ote ::	oject	Jille #:								_	\rightarrow	\rightarrow	_		Ħ	t	쀨					
To: Intered Project Information: Intered Informat	Required Project Information: Report To: Patrick Ahrens Copy To: Purchase Order No.: 4700004930 Project Number: Q-6005-001031 Societa Number: Q-6005-001031 Project Number: Q-6005-001031 Societa Number: Q-6005-0	voice	tentio	ompai	ddres	ace Qu	ace Pro	ace Pro			S		9	9	9	9	9	9	9	C	П		F	13				
TTO: Patrick Ahrens TTO: Patr	Required Project Information: Report To: Patrick Ahrens Copy To: Project Name: WDS#3 CCR Landfill - April 2022 8 Project Name: WDS#3 CCR Landfill - April 2022 8 Project Name: WDS#3 CCR Landfill - April 2022 8 Project Name: WDS#3 CCR Landfill - April 2022 8 WY G COMPOSITE ENDIGABLE BY AFFILIATION WY G COMPOSITE ENDIGABLE BY AFFILIATION RELINQUISHED BY AFFILIATION RELINQUISHED BY AFFILIATION	드	₹_	Ö	Ř	à ở		<u>a</u>	1		COLLECTION	TA 9M3T 3J9MA2		\dashv										100			TUR.	
Tro: Patrick Ahrens Tro: Patr	Report To: Patrick Ahrens Copy To: Report To: Patrick Ahrens Copy To: Project Number: Q-6005-001031 Project Number: Q-6005-001031 WYT G COMPOSITE FINANCE COMPOSITE FINDGRAB WYT G COMPOSITE FINANCE WYT G COMPOSITE FI						ample					IME	140	050	226	348	013	1	35	348			DATE	が一方	, III		SIGNA	
tion B Jured Project Information: Intro Patrick Ahrens Intro Pa	Required Project Information: Report To: Patrick Ahrens Copy To: Project Number: Q-6005-001031 Project Number: Q-6005-001031 WYT G START WYT G COLLECT WYT G COMPOSITE OGGS OGGS OGGS OGGS OGGS OGGS OGGS OGGS										OMPOSITE ND/GRAB		7						,	No.				H			ME AND	
tion B Jired Project Information: Intro: Patrick Ahrens To: A 70000493 A 70000493 A 7000 Base Order No.: 470000493 A 700 A 70000493 Base Order No.: 470000493 Base Order No.: 6 GRAB WT G G GRAB WT G G GRAB WT G G G GRAB WT G G G G G G G G G G G G G G G G G G G	Required Project Information: Report To: Patrick Ahrens Copy To: Project Name: W/DS#3 CCR L. Project Name: Q-6005-001031 START WY G G COMPOSIT START WY G G COMPOSIT START RELINQUISHED BY IA RELINQ						III - April			LECTE	8 m		· h									-	ATION	1/1	,		PLER NA	
tion B roject and To: Datring Codes to left) To: Trick Patring Patr	Section B Required Project Report To: Patrin Copy To: Odes Copy To: Ts M M M M M M M M M M M M M M M M M M M					4930	2 Landfi	331		100	POSITE	IIW	{	1	1	1	1	f	1	1			/ AFFILL	The same of the sa			SAMI	
tion B Trice de Project Ant To: NAT W W W W W W W W W W W W W W W W W W W	Section B Required Project Copy To: Odes Odes Odes Odes Odes Odes Odes Ode	ation:	rens			470000	#3 CCF	05-0010			COMP	DATE	1	١	4	-	1	1	ł	1			SHED BY	10				
To: To: To: To: To: To: To: To:	Nection by Required Project Nection By Www www www www www www www www www ww	nform	X Ah				WDS	09-0		(dW	-GRAB C=CO	SAMPLE TYPE (G=	O	O	ပ	O	O	O	O				NO.	3				
port To: py To:		oject I	Patric			der N				(fiel o	see valid codes !	E) BOOD XIBTAM	TW	TW	™	LW	1M	L/W	LW				REL	B				
		ction b quired Pr	port To:	by To:		rchase Or	ject Nam	ject Num		S										()				1	3			
A 4357 4357 4357 4357 4357 4357 4357 4357						гдуд	221-			N N	AY W AY ON O	≱ ≦ 0 ≒	0	7	35	90	7(5		CLA			or.	+	A 200.			
Valid Matrix CC Valid	22 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2				33	cene	414-	I TAT				QUE	S-10	S-10	S-10	S-10	S-10	A/Q/	EB1	44			N N	V	d EPA	9	2	
S-100 S-107 S-106 S-107 S-106 S-107 S-106 S-107 WHENTS COURSOUL OUTER OTHER OT	S-100 S-107 A/QC1 EB1 D-1-108 S-105		<u>se</u>	St	532(Dwe	Fax	Norm					1					Q		2.0			200	, v	otho	7 -	E - Y	
S2203 Swecenergygroup.con Fax 414-221-4357 Normal TAT Normal T	53203 9wecenergyg 8x 414-221- Normal TAT Normal TAT Normal TAT LS-100 LS-106 LS-107 QA/QC1 E UNIQUE IF KE IF FERE A 14-221- M M M M M M M M M M M M M M M M M M M		Serv	erett	W.	ens(mation		5LE 0-97.								3			IANO	2	with n	Na	AMA S.S.	
Service Ferett St Fens@wecenergygroup. Fax 414-221-4357 Fax 414-221-4357 Normal TAT Nor	Service Serv	ation	plic	V EV	ukee	k.ahr	835	TAT		It Infor		AMF (A-Z, Ds ML											Ting	H	nium v	- Corr	Jac.	
Service Fax. 414-22 Fax. 414-22 Normal TAT Normal TAT Normal TAT Normal TAT LS-100 LS-107 LS-107 CA/CCT CA/CC	Service Fax. 414-22 Fax. 414-22 Normal TAT Normal TAT Normal TAT Normal TAT LS-100 LS-101 LS-107 QA/QC1 CS-107 QA/QC1 EB1 CS-107 QA/QC1 CS-107 QA/QC1 EB1 CS-107 QA/QC1 CS-106 LS-107 QA/QC1 CS-107 QA/QC1 EB1 CS-107 CA-CC1	Inform	MPL	33 V	Ailwa	atric	21-2	Date/		n D d Clier		M pldr								10			4	1/0	seler		10	
Service ferett St. fens@wecenergy rens@wecenergy rensword	Service Ferett St. Fax 414-22 Fax 414-22 Fax 414-22 Normal TAT Normal TAT LS-100 LS-106 LS-106 LS-106 LS-107 QA/QC/1 EB1 CA/QC/1 CA/CC/1 CA/CC/	Nient I	>	8	2	d	14-2	ang !		ection		Sar												Ò	alyze	134		
Service Ferett St. Icas @weccenergy Fax 414-22 Normal TAT Normal TAT Normal TAT LS-101 LS-101 LS-107 LS-107 QA/QC1 EB1 CA/QC1 EB1 CA/QC1 EB1 CA/QC1 CA/QC1 EB1 CA/QC1 CA/CA/C1 CA/CA/C	Service Ferett St. Icas @weccenergy Fax 414-22 Normal TAT Normal TAT Normal TAT LS-101 LS-101 LS-107 LS-107 QA/QC1 EB1 CA/QC1 EB1 CA/QC1 EB1 CA/QC1 CA/QC1 EB1 CA/QC1 CA/CA/C1 CA/CA/C	~ ~	any:	Address		Email To.	Phone 4	restec		0, 0		71 AND 11		2	9	4	ln	8	7	60 0	. O	1	2	1	ase ar			
Sample IDs MUST BE UNIQUE Sample IDs MUST BE UNIQUE LS-107 ADDITIONAL COMMENTS EB1 LS-107 ADDITIONAL COMMENTS	Service Ferett St. Service Ferett St. Normal TAT LS-107 CA-105 LS-107 CA-107 CA-107	irec I		1,0		l m	1 =	12				# MƏLI	-	1 64	643	4	67	- 40				7	T	100	1 10	XII I	-	

To: ERIC KOVATCH PSB Annex A231

WEC Business Services From:

Laboratory Services PSBA-A070

WDNR Cert # 241329000

Report Date: Monday, December 5, 2022

The following are the analytical results for samples received by Laboratory Services on 11/10/2022

Sample Description: LS-100 Weston Disposal Site #3 - Ash Landfill CCR Well

Sample ID: Serial/Impact ID: AE63596

Sample Collector: Sample Collection Date: C APPLEKAMP 10/25/22 Collection Time: 12:54

D - ---14

A -- - 1-----

A -- - 1-----

				Result	Analysis	Analysis	
<u>Parameter</u>	Result	LOD	<u>Units</u>	<u>Flag</u>	Method	<u>Date</u>	Analyst
Total Boron	20.4	17.3	ug/L	J	EPA 200.7	10/28/22	020
Total Calcium	17100	114	ug/L		EPA 200.7	10/28/22	020
Total Chloride	2.3	0.43	mg/L		EPA 300.0	10/27/22	020
Total Fluoride	Less Than	0.095	mg/L		EPA 300.0	10/27/22	020
Total Sulfate	15.8	0.44	mg/L		EPA 300.0	10/27/22	020
Total Dissolved Solids	112	8.7	mg/L		Std Mtd 2540 C	10/27/22	020
Total Copper	Less Than	0.0034	mg/L		EPA 200.7	10/28/22	020
Total Manganese	0.0047	0.0015	mg/L	J	EPA 200.7	10/28/22	020
Total Silver	Less Than	0.0032	mg/L		EPA 200.7	10/28/22	020
Total Zinc	Less Than	0.0116	mg/L		EPA 200.7	10/28/22	020
Dissolved Calcium	19	0.114	mg/L		EPA 200.7	10/28/22	020
Dissolved Magnesium	3.22	0.182	mg/L		EPA 200.7	10/28/22	020
Dissolved Potassium	1.49	0.325	mg/L		EPA 200.7	10/28/22	020
Dissolved Sodium	4.99	0.350	mg/L		EPA 200.7	10/28/22	020
Total Alkalinity as CaCO3	42.8	5	mg/L		SM 2320 B-1997	11/1/22	020
Carbonate Ion	Less Than	5	mg/L		CO3	11/1/22	020
Bicarbonate Ion	42.8	5	mg/L		HCO3	11/1/22	020
Nitrate as N	2.8	0.044	mg/L	M0	EPA 353.2	10/27/22	020
Nitrite as N	Less Than	0.021	mg/L		EPA 300.0	10/27/22	020
Dissolved Chloride	2.2	0.43	mg/L	M0	EPA 300.0	11/9/22	020
Dissolved Fluoride	Less Than	0.095	mg/L	M0	EPA 300.0	11/9/22	020
Dissolved Sulfate	15.9	0.44	mg/L		EPA 300.0	11/9/22	020
Field Water Level	11.39	0.05	feet		H2OD	10/25/22	CWA
Field Temperature	12	0.1	Degrees C		TEMP	10/25/22	CWA
Field pH	5.1	0.1	Units		FIELDPH	10/25/22	CWA
Field Conductivity	146	0	umhos		FCOND25	10/25/22	CWA
Dissolved Oxygen-Field	2.65	0.1	mg/l		FIELDDO	10/25/22	CWA
Turbidity	2.14	0.1	NTU'S		EPA 180.1	10/25/22	CWA
Redox Potential	242	1	mV		ASTM D1498-93	10/25/22	CWA

Sample Description: LS-101 Weston Disposal Site #3 - Ash Landfill CCR Well

Sample ID: Serial/Impact ID: AE63597

Sample Collector: C APPLEKAMP Sample Collection Date: 10/25/22 Collection Time: 11:50

				Result	Analysis	Analysis	
<u>Parameter</u>	Result	LOD	<u>Units</u>	<u>Flag</u>	Method	Date	Analyst
Total Boron	Less Than	17.3	ug/L		EPA 200.7	10/28/22	020
Total Calcium	6300	114	ug/L		EPA 200.7	10/28/22	020
Total Chloride	0.49	0.43	mg/L	J	EPA 300.0	10/27/22	020

Total Fluoride	Less Than	0.095	mg/L		EPA 300.0	10/27/22	020
Total Sulfate	2.7	0.093	mg/L		EPA 300.0	10/27/22	020
Total Dissolved Solids	58.0	8.7	Č		Std Mtd 2540 C	10/27/22	020
			mg/L				
Total Copper	0.0046	0.0034	mg/L	J	EPA 200.7	10/28/22	020
Total Manganese	0.0020	0.0015	mg/L	В	EPA 200.7	10/28/22	020
Total Silver	Less Than	0.0032	mg/L		EPA 200.7	10/28/22	020
Total Zinc	Less Than	0.0116	mg/L		EPA 200.7	10/28/22	020
Dissolved Calcium	7.03	0.114	mg/L		EPA 200.7	10/28/22	020
Dissolved Magnesium	1.1	0.182	mg/L		EPA 200.7	10/28/22	020
Dissolved Potassium	1.39	0.325	mg/L		EPA 200.7	10/28/22	020
Dissolved Sodium	3.07	0.325	mg/L		EPA 200.7	10/28/22	020
Total Alkalinity as CaCO3	26.2	5	mg/L		SM 2320 B-1997	11/1/22	020
Carbonate Ion	Less Than	5	mg/L		CO3	11/1/22	020
Bicarbonate Ion	26.2	5	mg/L		HCO3	11/1/22	020
Nitrate as N	0.44	0.044	mg/L		EPA 353.2	10/27/22	020
Nitrite as N	Less Than	0.021	mg/L		EPA 300.0	10/27/22	020
Dissolved Chloride	0.70	0.43	mg/L	J	EPA 300.0	11/9/22	020
Dissolved Fluoride	Less Than	0.095	mg/L		EPA 300.0	11/9/22	020
Dissolved Sulfate	2.9	0.44	mg/L		EPA 300.0	11/9/22	020
Field Water Level	14.40	0.05	feet		H2OD	10/25/22	CWA
Field Temperature	11	0.1	Degrees C		TEMP	10/25/22	CWA
Field pH	5.4	0.1	Units		FIELDPH	10/25/22	CWA
Field Conductivity	64	0	umhos		FCOND25	10/25/22	CWA
Dissolved Oxygen-Field	6.48	0.1	mg/l		FIELDDO	10/25/22	CWA
Turbidity	2.78	0.1	NTU'S		EPA 180.1	10/25/22	CWA
Redox Potential	224	1	mV		ASTM D1498-93	10/25/22	CWA

Sample Description: LS-105 Weston Disposal Site #3 - Ash Landfill CCR Well

Sample ID: AE63598 Serial/Impact ID:

Sample Collector: C APPLEKAMP Sample Collection Date: 10/25/22 Collection Time: 14:14

				Result	Analysis	Analysis	
<u>Parameter</u>	Result	LOD	<u>Units</u>	Flag	Method	Date	Analyst
Total Boron	41.1	17.3	ug/L		EPA 200.7	10/28/22	020
Total Calcium	23200	114	ug/L		EPA 200.7	10/28/22	020
Total Chloride	1.8	0.43	mg/L	J	EPA 300.0	10/27/22	020
Total Fluoride	Less Than	0.095	mg/L		EPA 300.0	10/27/22	020
Total Sulfate	25.3	0.44	mg/L		EPA 300.0	10/27/22	020
Total Dissolved Solids	160	8.7	mg/L		Std Mtd 2540 C	10/27/22	020
Total Copper	0.0034	0.0034	mg/L	J	EPA 200.7	10/28/22	020
Total Manganese	1.26	0.0015	mg/L		EPA 200.7	10/28/22	020
Total Silver	Less Than	0.0032	mg/L		EPA 200.7	10/28/22	020
Total Zinc	Less Than	0.0116	mg/L		EPA 200.7	10/28/22	020
Dissolved Calcium	24.8	0.114	mg/L		EPA 200.7	10/28/22	020
Dissolved Magnesium	5.81	0.182	mg/L		EPA 200.7	10/28/22	020
Dissolved Potassium	1.33	0.325	mg/L		EPA 200.7	10/28/22	020
Dissolved Sodium	4.12	0.350	mg/L		EPA 200.7	10/28/22	020
Total Alkalinity as CaCO3	75.8	5	mg/L		SM 2320 B-1997	11/1/22	020
Carbonate Ion	Less Than	5	mg/L		CO3	11/1/22	020
Bicarbonate Ion	75.8	5	mg/L		HCO3	11/1/22	020
Nitrate as N	Less Than	0.044	mg/L		EPA 353.2	10/27/22	020
Nitrite as N	Less Than	0.021	mg/L		EPA 300.0	10/27/22	020
Dissolved Chloride	1.8	0.43	mg/L	J	EPA 300.0	11/9/22	020
Dissolved Fluoride	Less Than	0.095	mg/L		EPA 300.0	11/9/22	020
Dissolved Sulfate	25.3	0.44	mg/L		EPA 300.0	11/9/22	020
Field Water Level	6.02	0.05	feet		H2OD	10/25/22	CWA
Field Temperature	12	0.1	Degrees C		TEMP	10/25/22	CWA
Field pH	5.6	0.1	Units		FIELDPH	10/25/22	CWA
Field Conductivity	230	0	umhos		FCOND25	10/25/22	CWA
Dissolved Oxygen-Field	0.11	0.1	mg/l		FIELDDO	10/25/22	CWA

 Turbidity
 4.45
 0.1
 NTU'S
 EPA 180.1
 10/25/22
 CWA

 Redox Potential
 7.5
 1
 mV
 ASTM D1498-93
 10/25/22
 CWA

Sample Description: LS-106 Weston Disposal Site #3 - Ash Landfill CCR Well

Sample ID: AE63599 Serial/Impact ID:

Sample Collection C APPLEKAMP Sample Collection Date: 10/25/22 Collection Time: 15:15

				Result	Analysis	Analysis	
Parameter	Result	LOD	<u>Units</u>	<u>Flag</u>	Method	<u>Date</u>	Analyst
Total Boron	24.2	17.3	ug/L	J	EPA 200.7	10/28/22	020
Total Calcium	17000	114	ug/L		EPA 200.7	10/28/22	020
Total Chloride	2.5	0.43	mg/L		EPA 300.0	10/27/22	020
Total Fluoride	Less Than	0.095	mg/L		EPA 300.0	10/27/22	020
Total Sulfate	2.2	0.44	mg/L		EPA 300.0	10/27/22	020
Total Dissolved Solids	122	8.7	mg/L		Std Mtd 2540 C	10/27/22	020
Total Copper	0.0068	0.0034	mg/L	J	EPA 200.7	10/28/22	020
Total Manganese	1.35	0.0015	mg/L		EPA 200.7	10/28/22	020
Total Silver	Less Than	0.0032	mg/L		EPA 200.7	10/28/22	020
Total Zinc	Less Than	0.0116	mg/L		EPA 200.7	10/28/22	020
Dissolved Calcium	18.2	0.114	mg/L		EPA 200.7	10/28/22	020
Dissolved Magnesium	6.66	0.182	mg/L		EPA 200.7	10/28/22	020
Dissolved Potassium	1.45	0.325	mg/L		EPA 200.7	10/28/22	020
Dissolved Sodium	4.40	0.350	mg/L		EPA 200.7	10/28/22	020
Total Alkalinity as CaCO3	75.5	5	mg/L		SM 2320 B-1997	11/1/22	020
Carbonate Ion	Less Than	5	mg/L		CO3	11/1/22	020
Bicarbonate Ion	75.5	5	mg/L		HCO3	11/1/22	020
Nitrate as N	Less Than	0.044	mg/L		EPA 353.2	10/27/22	020
Nitrite as N	Less Than	0.021	mg/L		EPA 300.0	10/27/22	020
Dissolved Chloride	2.5	0.43	mg/L		EPA 300.0	11/9/22	020
Dissolved Fluoride	Less Than	0.095	mg/L		EPA 300.0	11/9/22	020
Dissolved Sulfate	2.2	0.44	mg/L		EPA 300.0	11/9/22	020
Field Water Level	12.38	0.05	feet		H2OD	10/25/22	CWA
Field Temperature	13	0.1	Degrees C		TEMP	10/25/22	CWA
Field pH	5.6	0.1	Units		FIELDPH	10/25/22	CWA
Field Conductivity	160	0	umhos		FCOND25	10/25/22	CWA
Dissolved Oxygen-Field	0.13	0.1	mg/l		FIELDDO	10/25/22	CWA
Turbidity	19.10	0.1	NTU'S		EPA 180.1	10/25/22	CWA
Redox Potential	56.7	1	mV		ASTM D1498-93	10/25/22	CWA

Sample Description: LS-107 Weston Disposal Site #3 - Ash Landfill CCR Well

Sample ID: AE63600 Serial/Impact ID:

Sample Collector: CAPPLEKAMP Sample Collection Date: 10/25/22 Collection Time: 10:47

				Result	Analysis	Analysis	
<u>Parameter</u>	Result	LOD	<u>Units</u>	<u>Flag</u>	Method	<u>Date</u>	Analyst
Total Boron	31.2	17.3	ug/L	J	EPA 200.7	10/28/22	020
Total Calcium	36200	114	ug/L		EPA 200.7	10/28/22	020
Total Chloride	10.4	0.43	mg/L		EPA 300.0	10/27/22	020
Total Fluoride	Less Than	0.095	mg/L		EPA 300.0	10/27/22	020
Total Sulfate	89.1	2.2	mg/L		EPA 300.0	10/28/22	020
Total Dissolved Solids	218	8.7	mg/L		Std Mtd 2540 C	10/27/22	020
Total Copper	0.0042	0.0034	mg/L	J	EPA 200.7	10/28/22	020
Total Manganese	0.0066	0.0015	mg/L	В	EPA 200.7	10/28/22	020
Total Silver	Less Than	0.0032	mg/L		EPA 200.7	10/28/22	020
Total Zinc	Less Than	0.0116	mg/L		EPA 200.7	10/28/22	020
Dissolved Calcium	38.2	0.114	mg/L		EPA 200.7	10/28/22	020
Dissolved Magnesium	8.56	0.182	mg/L		EPA 200.7	10/28/22	020
Dissolved Potassium	1.85	0.325	mg/L		EPA 200.7	10/28/22	020

Dissolved Sodium	6.67	0.350	mg/L		EPA 200.7	10/28/22	020
Total Alkalinity as CaCO3	40.7	5	mg/L		SM 2320 B-1997	11/1/22	020
Carbonate Ion	Less Than	5	mg/L		CO3	11/1/22	020
Bicarbonate Ion	40.7	5	mg/L		HCO3	11/1/22	020
Nitrate as N	1.5	0.044	mg/L	H1	EPA 353.2	10/27/22	020
Nitrite as N	Less Than	0.021	mg/L	H1	EPA 300.0	10/27/22	020
Dissolved Chloride	10.4	0.43	mg/L		EPA 300.0	11/9/22	020
Dissolved Fluoride	Less Than	0.095	mg/L		EPA 300.0	11/9/22	020
Dissolved Sulfate	94.4	2.2	mg/L		EPA 300.0	11/9/22	020
Field Water Level	5.85	0.05	feet		H2OD	10/25/22	CWA
Field Temperature	12	0.1	Degrees C		TEMP	10/25/22	CWA
Field pH	5.3	0.1	Units		FIELDPH	10/25/22	CWA
Field Conductivity	316	0	umhos		FCOND25	10/25/22	CWA
Dissolved Oxygen-Field	0.51	0.1	mg/l		FIELDDO	10/25/22	CWA
Turbidity	2.19	0.1	NTU'S		EPA 180.1	10/25/22	CWA
Redox Potential	215.6	1	mV		ASTM D1498-93	10/25/22	CWA

Sample Description: QAQC1 Weston Disposal Site #3 - Ash Landfill CCR Well

Sample ID: AE63601 Serial/Impact ID:

Sample Collector: CAPPLEKAMP Sample Collection Date: 10/25/22 Collection Time: 00:00

				Result	Analysis	Analysis	
<u>Parameter</u>	Result	LOD	<u>Units</u>	Flag	Method	Date	Analyst
Total Boron	18.6	17.3	ug/L	J	EPA 200.7	10/28/22	020
Total Calcium	16900	114	ug/L		EPA 200.7	10/28/22	020
Total Chloride	2.2	0.43	mg/L		EPA 300.0	10/27/22	020
Total Fluoride	Less Than	0.095	mg/L		EPA 300.0	10/27/22	020
Total Sulfate	16.1	0.44	mg/L		EPA 300.0	10/27/22	020
Total Dissolved Solids	102	8.7	mg/L		Std Mtd 2540 C	10/27/22	020
Total Copper	0.0042	0.0034	mg/L	J	EPA 200.7	10/28/22	020
Total Manganese	0.0046	0.0015	mg/L	J, B	EPA 200.7	10/28/22	020
Total Silver	Less Than	0.0032	mg/L		EPA 200.7	10/28/22	020
Total Zinc	Less Than	0.0116	mg/L		EPA 200.7	10/28/22	020
Dissolved Calcium	18.3	0.114	mg/L		EPA 200.7	10/28/22	020
Dissolved Magnesium	2.92	0.182	mg/L		EPA 200.7	10/28/22	020
Dissolved Potassium	1.42	0.325	mg/L		EPA 200.7	10/28/22	020
Dissolved Sodium	4.81	0.350	mg/L		EPA 200.7	10/28/22	020
Total Alkalinity as CaCO3	42.9	5	mg/L		SM 2320 B-1997	11/1/22	020
Carbonate Ion	Less Than	5	mg/L		CO3	11/1/22	020
Bicarbonate Ion	42.9	5	mg/L		HCO3	11/1/22	020
Nitrate as N	2.8	0.044	mg/L	H1	EPA 353.2	10/27/22	020
Nitrite as N	Less Than	0.021	mg/L	H1	EPA 300.0	10/27/22	020
Dissolved Chloride	2.3	0.43	mg/L		EPA 300.0	11/9/22	020
Dissolved Fluoride	Less Than	0.095	mg/L		EPA 300.0	11/9/22	020
Dissolved Sulfate	16.1	0.44	mg/L		EPA 300.0	11/9/22	020

Sample Description: EB1 Weston Disposal Site #3 - Ash Landfill CCR Well

Sample ID: AE63602 Serial/Impact ID:

Sample Collector: C APPLEKAMP Sample Collection Date: 10/25/22 Collection Time: 18:00

				Result	Analysis	Analysis	
<u>Parameter</u>	Result	LOD	<u>Units</u>	<u>Flag</u>	Method	Date	Analyst
Total Boron	19.0	17.3	ug/L	J	EPA 200.7	10/28/22	020
Total Calcium	Less Than	114	ug/L	500	EPA 200.7	10/28/22	020
Total Chloride	Less Than	0.43	mg/L		EPA 300.0	10/27/22	020
Total Fluoride	Less Than	0.095	mg/L		EPA 300.0	10/27/22	020
Total Sulfate	Less Than	0.44	mg/L		EPA 300.0	10/27/22	020
Total Dissolved Solids	Less Than	8.7	mg/L		Std Mtd 2540 C	10/27/22	020

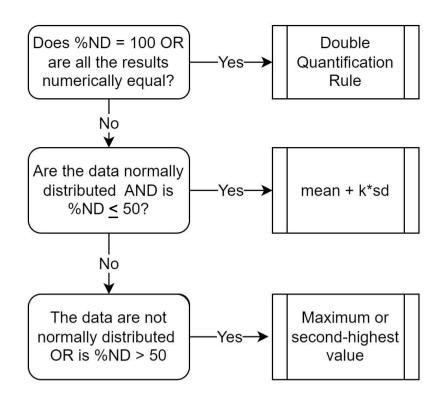
Total Copper	Less Than	0.0034	mg/L	EPA 200.7	10/28/22	020
Total Manganese	Less Than	0.0015	mg/L	EPA 200.7	10/28/22	020
Total Silver	Less Than	0.0032	mg/L	EPA 200.7	10/28/22	020
Total Zinc	Less Than	0.0116	mg/L	EPA 200.7	10/28/22	020
Dissolved Calcium	Less Than	0.114	mg/L	EPA 200.7	10/28/22	020
Dissolved Magnesium	Less Than	0.182	mg/L	EPA 200.7	10/28/22	020
Dissolved Potassium	Less Than	0.325	mg/L	EPA 200.7	10/28/22	020
Dissolved Sodium	Less Than	0.350	mg/L	EPA 200.7	10/28/22	020
Total Alkalinity as CaCO3	Less Than	5	mg/L	SM 2320 B-1997	11/1/22	020
Carbonate Ion	Less Than	5	mg/L	CO3	11/1/22	020
Bicarbonate Ion	Less Than	5	mg/L	HCO3	11/1/22	020
Nitrate as N	Less Than	0.044	mg/L	EPA 353.2	10/27/22	020
Nitrite as N	Less Than	0.021	mg/L	EPA 300.0	10/27/22	020
Dissolved Chloride	Less Than	0.43	mg/L	EPA 300.0	11/9/22	020
Dissolved Fluoride	Less Than	0.095	mg/L	EPA 300.0	11/9/22	020
Dissolved Sulfate	Less Than	0.44	mg/L	EPA 300.0	11/9/22	020

Sample Description: LS-106 DUP Weston Disposal Site #3 - Ash Landfill CCR Well

Sample ID: AE63603 Serial/Impact ID:

Sample Collector: CAPPLEKAMP Sample Collection Date: 10/25/22 Collection Time: 15:15

				Result	Analysis	Analysis	
<u>Parameter</u>	Result	LOD	<u>Units</u>	<u>Flag</u>	Method	Date	Analyst
Total Dissolved Solids	114	8.7	mg/L		Std Mtd 2540 C	10/27/22	020
Dissolved Calcium	18.6	0.114	mg/L		EPA 200.7	11/3/22	020
Dissolved Magnesium	6.93	0.182	mg/L		EPA 200.7	11/3/22	020
Dissolved Potassium	1.78	0.325	mg/L		EPA 200.7	11/3/22	020
Dissolved Sodium	4.86	0.350	mg/L		EPA 200.7	11/3/22	020
Total Alkalinity as CaCO3	77.7	5	mg/L		SM 2320 B-1997	11/2/22	020
Carbonate Ion	Less Than	5	mg/L		CO3	11/2/22	020
Bicarbonate Ion	77.7	5	mg/L		HCO3	11/2/22	020
Dissolved Chloride	2.6	0.43	mg/L		EPA 300.0	11/9/22	020
Dissolved Fluoride	Less Than	0.095	mg/L		EPA 300.0	11/9/22	020
Dissolved Sulfate	2.4	0.44	mg/L		EPA 300.0	11/9/22	020


If there are any questions concerning this report, please contact

Laboratory Services at (414) 221-4595.

Sample Comments:

APPENDIX B
STATISTICAL METHODOLOGY FOR DETERMINATION OF BACKGROUND VALUES

Notes %ND = Percent non-detected samples sd = standard deviation k = kappa for site-wide false positive rate Alpha Levels Confidence Limit = 0.1

When data are not normally distributed or %ND > 50, the maximum value is used if the background sample size is < 60. Where the background sample size is ≥ 60 , the achievable per-constituent false positive rates for the maximum and second-highest background values will be compared, and the background value with the achievable per-constituent false positive rate that is closest to, but does not exceed, the target per-constituent false positive rate of 0.015% is used.

APPENDIX D

2022 LEACHATE PIPE CLEANING AND INSPECTION REPORT [PER NR 506.20(3)(D)]

Wisconsin Public Service

Leachate Line Inspection & Jetting Location: Weston Disposal Site #3

Inspection for: Riverview Construction

The National Association of Sewer Service Companies (NASSCO[©]) has developed the Pipeline Assessment Certification Program (PACP[©]) to provide standardization and consistency in the way we evaluate sewer pipe condition to assure that all pipe system data is collected and coded consistently and reliably. The goal of PACP is to create a comprehensive and reliable reservoir of data to describe the sewer pipe that can be used in prioritization, planning, and renovation of wastewater collection systems.

As a member of NASSCO, Great Lakes TV Seal, Inc. is pleased to provide you with an explanation of Pipeline Assessment Certification Program (PACP[©]). Please see Appendix.

CCTV Surveys List for Riverview Construction

Number of surveys in this list is

as of

Tuesday, January 3, 2023

Unit of measure:

ft

Setup	Date	Street	Start MH	Finish MH	Dir	Size inch	Pre Clean	Media Number	Schedule Length	d Surveyed Length
1	10/14/2022	Weston Disposal Site #3	C105	SOUTH	D	6	J	22402		344.9
2	10/14/2022	Weston Disposal Site #3	C106	SOUTH	D	6	J	22402		334.9
3	10/14/2022	Weston Disposal Site #3	C107	SOUTH	D	6	J	22402		134.2
4	10/14/2022	Weston Disposal Site #3	C104	SOUTH	D	6	J	22402		499.6
5	10/14/2022	Weston Disposal Site #3	C103	SOUTH	D	6	J	22402		415.7
6	10/14/2022	Weston Disposal Site #3	C102	WEST	D	6	J	22402	4	598.5
7	12/27/2022	Weston Disposal Site #3	C102	WEST	D	6	J	22402		597.9
8	12/27/2022	Weston Disposal Site #3	C101	WEST	D	6	J	22402		602.0
9	12/27/2022	Weston Disposal Site #3	C201	NORTH	U	6	J	22402		420.0
10	12/27/2022	Weston Disposal Site #3	C202	NORTH	D	6	J	22402		428.5

Total Scheduled Length
Total Length Surveyed

0.0

4,376.2

CCTV Defects by Inspection Report

Printed on

01/03/2023

Client R

Riverview Construction

Work Order

Project

WES22402

Start Tape 22402

Project Start 10/14/2022 UOM Ft Setup

Setups 10

Location Database

Q:\2022 PIPELOGIX\DATA\RIVERVIEWWESTON22402.MDB

	M	lanholes		5	Struc	tura	l co	nditi	ons			0 a	and	M C	onc	litio	ns			Mis	sc
Setup	From Manhole	To Manhole	Surveyed length	Break in pipe	Collapse	Cracks	Fracture	Deformation	Defective Joints	Defective Lining	Defective Taps	Roots	Grease	Encrustation & Scale	Settled Deposits	Infiltration	Obstruction	Line Deviations	Water Level +20%	Survey Abandoned	Camera Underwater
1	C105 SOUTH		344.9																	-	
2	C106 SOUTH		334.9					-										2		1	
3	C107 SOUTH		134.2															2		_	
4	C104 SOUTH		499.6															1		-	
5	C103 SOUTH		415.7													-	1	1		-	
6	C102 WEST		598.5															2		1	37
7	C102 WEST		597.9															2		_	33
8	C101 WEST		602.0						2			.C						2	12	1	45
9	C201 NORTH		420.0															-		-	
10	C202 NORTH		428.5	ē														-		-	2
	J	Totals	4376.2	0	0	0	0	0	2	0	0	5	0	0	0	0	-	15	12	1	117

labular Keport or i Si	. 0100	^	101 1414	CIVICW OOIISLI	uction		
Setup 1 Surveyo	r Bill Krohn	Certificate #	£ U609-1885	System C	Owner WPS		
Drainage	Survey Cust	omer Riverview C	Construction				
P/O #	Date 2022/10/14	Time 10:08	Street W	eston Disposal Site	e #3		
City Knownlton	Further	location details	;				
Up C105	Ri	m to invert	Grade	to invert	Rim to	grade	Ft
Down SOUTH	Ri	m to invert	Grade	to invert	Rim to	grade	Ft
Use Processes	Direction	n Down	Flow contr	ol	Med	ia No 22402	
Shape Circular	Heigh	t 6 Width	ins P	reclean J	Date Cle	aned	
Material Other		Joint length	Ft Total le	ength Ft	Length	Surveyed 34	4.9 F
Lining		Year laid	Year rehak	oilitated	Weather	Snow	
Purpose Routine Asses	ssment	Cat	t			Pressure	
Additional info				Structural	O & M	Constructi	onal
Location Yard				Miscellaneous			
Project WES22402				Worl	(Order		
Northing		Easting	3	Elev	vation		
Coordinate System				GPS Accura	су		
0 11/11 00 0 1			1-0 0/	L. (F., T., I., D. (Damada		-

Count Video	CD Code	ln1	ln2	%	JntF	r To	ImRe	ef Remarks
0.0	ST Start of Survey							2
0.0	AEP End of Pipe							C105
0.0	MWL Water Level			0				
36.3	LU Alignment Up			25				
344.9	MSA Abandoned Survey							CAMERA CANNOT CONTINUE*

344.9 Ft Total Length Surveyed

	Scores	Structural:	Pipe Rating 0	Pipe Ratings Index 0	Quick Rating 0000
Madaa		O&M:	Pipe Rating 4	Pipe Ratings Index 4	Quick Rating 4100
Notes		Overall	Pipe Rating 4	Pipe Ratings Index 4	Quick Rating 4100

^{*}Note: At 344.9' camera cannot continue due to weld at joint

abular Report of For	Α	IOI INVERVIOUS CONST	i dotion	
Setup 2 Surveyor Bill Kroh	n Certificate #	U609-1885 System	Owner WPS	
Drainage	Survey Customer Riverview Co	onstruction		
P/O # Date 2	2022/10/14 Time 11:38	Street Weston Disposal Si	te #3	
City Knownlton	Further location details			
Up C106	Rim to invert	Grade to invert	Rim to grade	Ft
Down SOUTH	Rim to invert	Grade to invert	Rim to grade	Ft
Use Processes	Direction Down	Flow control	Media No 22402	
Shape Circular	Height 6 Width	ins Preclean J	Date Cleaned	
Material Other	Joint length 40.0	OFFt Totallength Ft	Length Surveyed 3	34.9 F
Lining	Year laid	Year rehabilitated	Weather Snow	
Purpose Routine Assessment	Cat		Pressure	
Additional info		Structural	O & M Construc	tional
Location Yard		Miscellaneous		
Project WES22402		Wor	k Order	
Northing	Easting	Ele	vation	
Coordinate System		GPS Accur	асу	
0 00 0 1	I-4	In 0 0/ IntEx To Impos	Damada	

Count Video	CD Code		ln1	ln2	%	JntF	r To	To ImRef Remarks				
0.0	ST	Start of Survey										
0.0	AEP	End of Pipe							C106			
0.0	MWL	Water Level			0							
36.3	LU	Alignment Up			25				-			
334.9	LL	Alignment Left			50		_					
334.9	MSA	Abandoned Survey							CAMERA CANNOT CONTINUE*			

334.9 Ft Total Length Surveyed

	Scores	Structural:	Pipe Rating 0	Pipe Ratings Index 0	Quick Rating 0000
NI 4		O&M:	Pipe Rating 8	Pipe Ratings Index 4	Quick Rating 4200
Notes		Overall	Pipe Rating 8	Pipe Ratings Index 4	Quick Rating 4200

^{*}Note: At 334.9' camera cannot continue due to bend in line

Setup 3 Surveyor Bill Krohn	Certificate # \	J609-1885	System O	wner WPS	
Drainage Surv	vey Customer Riverview Co	nstruction			
P/O # Date 2022	10/14 Time 12:22	Street Wes	ton Disposal Site	#3	
City KnownIton	Further location details				
Up C107	Rim to invert	Grade to	invert	Rim to g	grade Ft
Down SOUTH	Rim to invert	Grade to	invert	Rim to	grade Ft
Use Processes	Direction Down	Flow control		Media	a No 22402
Shape Circular	Height 6 Width	ins Pre	clean J	Date Clea	ned T
Material Other	Joint length 40.0	Ft Total len	gth Ft	Length S	Surveyed 134.2 Ft
Lining	Year laid	Year rehabili	itated	Weather	Snow
Purpose Routine Assessment	Cat			1	Pressure
Additional info			Structural	O & M	Constructional
Location Yard			Miscellaneous		
Project WES22402		_	Work	Order	
Northing	Easting		Elev	ation	
Coordinate System			GPS Accura	су	

Count Video	CD Code	ln1	In2	%	JntF	r To	lmRe	f Remarks
0.0	ST Start of Survey							
0.0	AEP End of Pipe							C107
0.0	MWL Water Level			0				
36.2	LU Alignment Up			25				
134.2	LL Alignment Left			50				
134.2	MSA Abandoned Survey							CAMERA CANNOT CONTINUE*

134.2 Ft Total Length Surveyed

	Scores	Structural:	Pipe Rating 0	Pipe Ratings Index 0	Quick Rating 0000
Madaa	000,00	O&M:	Pipe Rating 8	Pipe Ratings Index 4	Quick Rating 4200
Notes		Overall	Pipe Rating 8	Pipe Ratings Index 4	Quick Rating 4200

^{*}Note: At 134.2' camera cannot continue due to bend in line

Tabulal Nepolt of For O104	^	ICI ICIVEIVIEW COIISLI	uction	
Setup 4 Surveyor Bill Krol	hn Certificate # U	J609-1885 System C	Owner WPS	
Drainage	Survey Customer Riverview Co	nstruction		
P/O # Date	2022/10/14 Time 12:51	Street Weston Disposal Site	e #3	
City KnownIton	Further location details			
Up C104	Rim to invert	Grade to invert	Rim to grade	Ft
Down SOUTH	Rim to invert	Grade to invert	Rim to grade	Ft
Use Processes	Direction Down	Flow control	Media No 22402	
Shape Circular	Height 6 Width	ins Preclean J	Date Cleaned	
Material Other	Joint length 40.0	Ft Total length Ft	Length Surveyed 499.6	3 F
Lining	Year laid	Year rehabilitated	Weather Snow	
Purpose Routine Assessment	Cat		Pressure	
Additional info		Structural	O & M Construction	al
Location Yard		Miscellaneous		
Project WES22402		Work	Order	
Northing	Easting	Elev	/ation	
Coordinate System		GPS Accura	су	
		10 0/ 1/5 7 1 5 6		

Count Video	CD Code		ln1	ln2	%	Jnt	Fr	То	ImRe	f Remarks
0.0	ST	Start of Survey								
0.0	AEP	End of Pipe							A	C104
0.0	MWL	Water Level			0					
30.9	LU	Alignment Up			25					
499.6	MSA	Abandoned Survey								CAMERA CANNOT CONTINUE*

499.6 Ft Total Length Surveyed

	Scores	Structural:	Pipe Rating 0	Pipe Ratings Index 0	Quick Rating 0000
Matan		O&M:	Pipe Rating 4	Pipe Ratings Index 4	Quick Rating 4100
Notes		Overall	Pipe Rating 4	Pipe Ratings Index 4	Quick Rating 4100

^{*}Note: At 499.6' camera cannot continue due to weld at joint

0. 1. 0.100					
eyor Bill Krohn	Certificate # U	J609-1885	System C	Owner WPS	
Survey Cus	tomer Riverview Cor	nstruction			
Date 2022/10/14	Time 14:10	Street We	eston Disposal Site	e #3	
Furthe	r location details				
R	im to invert	Grade t	o invert	Rim to	grade Ft
R	im to invert	Grade t	o invert	Rim to	grade Ft
Directi	on Down	Flow contro	ol	Med	ia No 22402
Heigh	nt 6 Width	ins Pr	eclean J	Date Cle	aned
3	Joint length 40.00	Ft Total le	ngth Ft	Length	Surveyed 415.7
	Year laid	Year rehab	ilitated	Weather	Snow
sessment	Cat				Pressure
			Structural	O & M	Constructional
			Miscellaneous		
			Work	Order	-
	Easting		Elev	vation	
			GPS Accura	су	
	eyor Bill Krohn Survey Cust Date 2022/10/14 Furthe R R Directi	Survey Customer Riverview Cor Date 2022/10/14 Time 14:10 Further location details Rim to invert Rim to invert Direction Down Height 6 Width Joint length 40.00 Year laid essessment Cat	Survey Customer Riverview Construction Date 2022/10/14 Time 14:10 Street Western Further location details Rim to invert Grade to Rim to invert Grade to Direction Down Flow control Height 6 Width ins Proposition Joint length 40.0 to Total le Year laid Year rehables	Survey Customer Riverview Construction Date 2022/10/14 Time 14:10 Street Weston Disposal Site Further location details Rim to invert Grade to invert Rim to invert Grade to invert Direction Down Flow control Height 6 Width ins Preclean J Joint length 40.0 Ft Total length Ft Year laid Year rehabilitated Structural Miscellaneous Work Easting Elever	Survey Customer Riverview Construction Date 2022/10/14 Time 14:10 Street Weston Disposal Site #3 Further location details Rim to invert Grade to invert Rim to Rim to invert Grade to invert Rim to Direction Down Flow control Med Height 6 Width ins Preclean J Date Cle Joint length 40.0 Ft Total length Ft Length Year laid Year rehabilitated Weather seessment Cat Structural O & M Miscellaneous Work Order

Count Video	CD Code	In1 In2 % JntFr To ImRef Remarks			f Remarks			
0.0	ST Start of Survey							
0.0	AEP End of Pipe							C103
0.0	MWL Water Level			0				2
. 33.8	LU Alignment Up			25				
415.7	OBJ Obstacle In Joint			5	J	06	0001	UNKNOWN OBSTRUCTION
415.7	MSA Abandoned Survey							CAMERA CANNOT CONTINUE*

415.7 Ft Total Length Surveyed

	Scores	Structural:	Pipe Rating 0	Pipe Ratings Index 0	Quick Rating 0000
N-4		O&M:	Pipe Rating 6	Pipe Ratings Index 3	Quick Rating 4121
Notes		Overall	Pipe Rating 6	Pipe Ratings Index 3	Quick Rating 4121

^{*}Note: At 415.7' camera cannot continue due to unknown obstruction lodged in joint

Χ

Surveyed On 2022/10/14 Setup 5

Street Name Weston Disposal Site #3

Video 22402

City Name KnownIton

Weather Snow

Location Yard

Work Order

From Manhole C103

To Manhole SOUTH

Direction Downstream

Observation: OBJ Counter: 417.8 From: 06 To: Remarks: UNKNOWN OBJECT .01: +0417.80 ft

Date:

2022/10/14

Distance: 415.7 Ft

Obs: Obstacle In Joint

Comments: UNKNOWN OBSTRUCTION

Setup 6	Surveyor Bill Krohn	Certific	ate # U609-	-1885	System O	wner WPS		
Drainage	Surve	ey Customer Rivery	riew Construc	ction				
P/O #	Date 2022/1	0/14 Time 1	5:04 S	treet We	ston Disposal Site	e #3		
City Knownl	ton	Further location de	etails					_
Up C102		Rim to invert		Grade to	o invert	Rim to	grade	Ft
Down WEST		Rim to invert		Grade to	o invert	Rim to	grade	Ft
Use Processes	1	Direction Down	Flo	w contro	I	Med	lia No 22402	
Shape Circular		Height 6 Wid	th ins	Pre	eclean J	Date Cle	eaned	
Material Other		Joint leng	th 40.0 Ft	Total ler	ngth Ft	Length	Surveyed 598	.5 Ft
Lining		Year laid	d Ye	ar rehabi	litated	Weather	Snow	
Purpose Rout	ine Assessment		Cat				Pressure	
Additional info			-	·	Structural	O & M	Constructio	nal
Location Yar	d				Miscellaneous			
Project WES2	22402				Work	Order		
Northing		Ea	sting		Elev	ation /		
Coordinate Syst	em				GPS Accura	су		

Count Video	CD	Code		ln1	ln2	%	Jnt	Fr	То	ImRe	f Remarks
0.0		ST	Start of Survey								
0.0		AEP	End of Pipe								C102
0.0		MWL	Water Level		- 1	0					
41.5		LU	Alignment Up			25					
42.6	S01	MCU	Camera Underwater								
58.0		TF	Tap Factory	6.000				09			
59.9		TF	Tap Factory	6.000				03			
223.4	F01	MCU	Camera Underwater								
598.5		LR	Alignment Right			50					
598.5		MSA	Abandoned Survey				i.				CAMERA CANNOT CONTINUE*

598.5 Ft Total Length Surveyed

	Scores	Structural:	Pipe Rating 0	Pipe Ratings Index 0	Quick Rating 0000
K1 4	000,00	O&M:	Pipe Rating 152	Pipe Ratings Index 4	Quick Rating 4F00
Notes		Overali	Pipe Rating 152	Pipe Ratings Index 4	Quick Rating 4F00

*Note: At 598.5' camera cannot continue due to elbow Riverview Construction requested line to be retelevised / See setup 7

CD column indicates continuous defects:

S indicates start of defect F indicates finish of defect

for

Riverview Construction

Setup 7 Surveyor	Bill Krohn	Certificate # U	1609-1885	System C	wner WPS		
Drainage	Survey Custome	r Riverview Cor	struction				
P/O #	Date 2022/12/27	Time 9:43	Street We	ston Disposal Site	e #3		
City Knownlton	Further loca	ation details					
Up C102	Rim to	invert	Grade t	o invert	Rim to	grade	Ft
Down WEST	Rim to	invert	Grade t	o invert	Rim to	grade	Ft
Use Processes	Direction D	own	Flow contro	ol .	Med	ia No 22402	
Shape Circular	Height 6	Width	ins Pr	eclean J	Date Cle	aned	
Material Other	Joi	nt length 40.00	Ft Total le	ngth Ft	Length	Surveyed 597	7.9 Ft
Lining	Υ	ear laid	Year rehab	ilitated	Weather	Dry	
Purpose Routine Assess	sment	Cat				Pressure	
Additional info Ret	elevise per Riverview Constr	uction	•	Structural	O & M	Construction	onal
Location Yard				Miscellaneous			
Project WES22402				Work	Order		•
Northing		Easting		Elev	/ation		
Coordinate System				GPS Accura	cy		

Count Video	CD	Code		ln1	ln2	%	Jnt	Fr	То	ImRe	f Remarks
0.0		ST	Start of Survey								
0.0		AEP	End of Pipe								C102
0.0		MWL	Water Level			0					
2.0		MGO	General Observation								FROST ON PIPE
41.0		LU	Alignment Up			25					
41.5	S01	MCU	Camera Underwater								
57.1		TF	Tap Factory	6.000				09			
59.0		TF	Tap Factory	6.000			П	03			
203.6	F01	MCU	Camera Underwater								
597.9		LR	Alignment Right			50					
597.9		MSA	Abandoned Survey								CAMERA CANNOT CONTINUE*

597.9 Ft Total Length Surveyed

	Scores	Structural:	Pipe Rating 0	Pipe Ratings Index 0	Quick Rating 0000
Mataa		O&M:	Pipe Rating 136	Pipe Ratings Index 4	Quick Rating 4E00
Notes		Overall	Pipe Rating 136	Pipe Ratings Index 4	Quick Rating 4E00

^{*}Note: At 597.9' camera cannot continue due to elbow

CD column indicates continuous defects: S indicates start of defect

F indicates finish of defect

for

Riverview Construction

Setup	8	Surveyor B	Bill Krohn		ertificate #	U609-188	85	System O	wner WPS		
Drainage	<u>.</u>			ey Customer	Riverview Co	onstruction	n	-			
P/O #	-		Date 2022/1	_	Time 11:16			ston Disposal Site	#3		
City	Knowi	nlton		Further loca	tion details						
	C101			Rim to	invert	G	rade t	o invert	Rim to	grade	Ft
•	WEST			Rim to	invert	G	rade t	o invert	Rim to	grade	Ft
Use Pro	cesses			Direction Do	wn	Flow	ontro	ı	Med	lia No 22402	
Shape	Circular			Height 6	Width	ins	Pr	eclean J	Date Cle	eaned	
Material				Join	it length 40.0	OFt To	tal le	ngth Ft	Length	Surveyed 6	02.0 Ft
Lining				Ye	ear laid	Year	rehabi	ilitated	Weather	Dry	
Purpose	Ro	utine Assessm	nent		Cat					Pressure	
Addition	al info							Structural	O & M	Construc	ctional
Location	ı Ya	ard						Miscellaneous			
Project	WES	S22402						Work	Order		
Northing	9				Easting			Elev	ration		
Coordin	ate Sys	tem						GPS Accura	су		

Count Video	CD	Code		ln1	ln2	%	JntF	r	Го	lmRef	Remarks
0.0		ST	Start of Survey								
0.0		AEP	End of Pipe								C101
0.0		MWL	Water Level			0					
1.5		MGO	General Observation				1.0				FROST ON PIPE
41.0	S01	MCU	Camera Underwater								
42.2		LU	Alignment Up			25					
51.6		JSM	Joint Separated Medium								SEPARATED 1.5"
51.6		MGO	General Observation								POSSIBLE ROLLED GASKET
51.6		MGO	General Observation								ROOTS IN LINE
52.5		TF	Tap Factory	6.000				09			
53.6		JSM	Joint Separated Medium								SEPARATED 1.5"
59.1		TF	Tap Factory	6.000				03			
265.8	F01	MCU	Camera Underwater								
306.3		RMB	Roots Medium Barrel			5		07			AT DRAIN HOLE
307.1	S02	RMB	Roots Medium Barrel			5		05	07		AT DRAIN HOLES
312.5	F02	RMB	Roots Medium Barrel			5		05	07		AT DRAIN HOLES
319.1	S03	RFB	Roots Fine Barrel					05	07		AT DRAIN HOLES
332.3		RMB	Roots Medium Barrel			10		05			
334.5	F03	RFB	Roots Fine Barrel					05	07		AT DRAIN HOLES
348.2	S04	MWL	S Water Level Sag			25					
360.8		RMB	Roots Medium Barrel			5		05			AT DRAIN HOLE
401.1	S05	RFB	Roots Fine Barrel					05	07		AT DRAIN HOLES
407.2	F04	MWL	S Water Level Sag			25	5				
412.4	F05	RFB	Roots Fine Barrel					05	07		AT DRAIN HOLES
602.0		LR	Alignment Right			50					
602.0		MSA	Abandoned Survey								CAMERA CANNOT CONTINUE*

602.0 Ft Total Length Surveyed

Tabular Report of PSR	C101	Α	for	Riverview Construction
-----------------------	------	---	-----	-------------------------------

Setup	8	Surveyor B	ill Krohn	C	ertificate #	U609-188	5	System C	Owner WPS		
Drainag	je		Surve	ey Customer	Riverview Co	onstruction					
P/O #			Date 2022/1	2/27	Γime 11:16	Stree	et We	ston Disposal Site	e #3		
City	Know	nlton		Further loca	tion details						
Up	C101			Rim to	invert	Gr	ade to	o invert	Rim to	grade	Ft
Down	WEST			Rim to	invert	Gr	ade to	o invert	Rim to	grade	Ft
Use Pr	ocesses			Direction Do	wn	Flow c	ontro	I	Med	lia No 2240	2
Shape	Circular			Height 6	Width	ins	Pre	eclean J	Date Cl	eaned	
Material	l Other			Join	t length 40.	OFt To	tal ler	ngth Ft	Length	Surveyed	602.0 Ft
Lining				Ye	ear laid	Year r	ehabi	litated	Weather	Dry	
Purpose	e Ro	utine Assessm	ent		Cat					Pressure	
Additio	nal info					-		Structural	O & M	Constru	ıctional
Locatio	n Y	ard						Miscellaneous			
Project	WES	522402					,	Work	Order		
Northin	g				Easting			Elev	vation		
Coordin	ate Sys	stem						GPS Accura	су		

	Scores	Structural:	Pipe Rating 26	Pipe Ratings Index 1.9	Quick Rating 2A12
Nista	333.33	O&M:	Pipe Rating 214	Pipe Ratings Index 3.8	Quick Rating 4l25
Notes	[Overall	Pipe Rating 240	Pipe Ratings Index 5.7	Quick Rating 4l2B

^{*}Note: At 602.0' camera cannot continue due to elbow

CD column indicates continuous defects:

S indicates start of defect

F indicates finish of defect

Α

Surveyed On 2022/12/27

Setup 8

Video 22402

Street Name Weston Disposal Site #3

City Name KnownIton

Weather Dry

Location Yard

Work Order

From Manhole C101

To Manhole WEST

Direction Downstream

Date:

2022/12/27

Distance: 51.6 Ft

Obs: General Observation

Comments:

POSSIBLE ROLLED GASKET

Date:

2022/12/27

Distance: 306.3 Ft

Obs: Roots Medium Barrel

Comments:

AT DRAIN HOLE

for

Riverview Construction

Setup 9 Surveyor Bill Krohn	Certificate # \	J609-1885 System (Owner WPS					
Drainage Sur	vey Customer Riverview Co	nstruction						
P/O # Date 2022	2/12/27 Time 12:36	Street Weston Disposal Sit	e #3					
City Knownlton	Further location details							
Up NORTH	Rim to invert	Grade to invert	Rim to grade	Ft				
Down C201	Rim to invert	Grade to invert	Rim to grade	Ft				
Use Processes	Direction Up	Flow control	Media No 22402					
Shape Circular	Height 6 Width	ins Preclean J	Date Cleaned					
Material Other	Joint length 40.0	♥t Total length Ft	Length Surveyed	420.0 F 1				
Lining	Year laid	Year rehabilitated	Weather Dry					
Purpose Routine Assessment	Cat		Pressure					
Additional info		Structural	O & M Constru	uctional				
Location Yard		Miscellaneous						
Project WES22402		Wor	Work Order					
Northing	Easting	Ele	Elevation					
Coordinate System	GPS Accuracy							

Count Video	CD Code		ln1	ln2	%	Jnt	Fr	То	ImRe	f Remarks
0.0	ST	Start of Survey								
0.0	AEP	End of Pipe								C201
0.0	MWL	Water Level			0					
73.8	LU	Alignment Up			25					
87.6	TF	Tap Factory	6.000				03			
89.5	TF	Tap Factory	6.000				09			
420.0	MGO	General Observation							0001	WELD AT JOINT
420.0	MSA	Abandoned Survey								CAMERA CANNOT CONTINUE*

420.0 Ft Total Length Surveyed

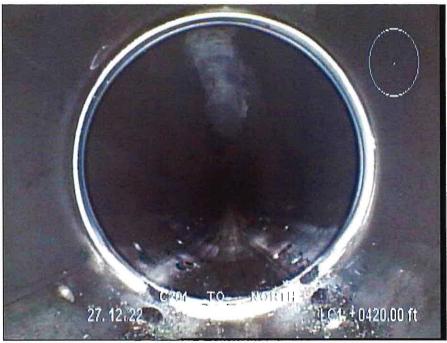
Scores

Notes

Structural:	Pipe Rating 0	Pipe Ratings Index 0	Quick Rating 0000
O&M:	Pipe Rating 4	Pipe Ratings Index 4	Quick Rating 4100
Overall	Pipe Rating 4	Pipe Ratings Index 4	Quick Rating 4100

^{*}Note: At 420.0' camera cannot continue due to weld at joint / Approximately 374' not televised

Α


Work Order Surveyed On 2022/12/27 Setup 9

Street Name Weston Disposal Site #3 Video 22402

City Name KnownIton Weather Dry

Location Yard

From Manhole C201 To Manhole NORTH Direction Upstream

Date:

2022/12/27

Distance: 420.0 Ft

Obs: General Observation

Comments:

WELD AT JOINT

i abaiai i v	cport or r or	CZCZ	, ,		101	1 (1) (VICW CONSTI	aotion		
Setup	10 Surveyo	or Bill Krohn	C	ertificate # \	J609-188	5	System C	wner WPS		
Drainage		Survey 0	Customer	Riverview Co	nstruction					
P/O #		Date 2022/12/2	7 1	Γ ime 14:02	Stree	et Wes	ston Disposal Site	= #3		
City I	KnownIton	Fui	rther loca	tion details						
Up C2	02		Rim to i	invert	Gr	ade to	invert	Rim to	grade	Ft
Down NO	Down NORTH			invert	Gr	ade to	invert	Rim to	grade	Ft
Use Proce	esses	Dire	ection Do	wn	Flow c	ontro		Med	lia No 22402	
Shape Cir	cular	He	eight 6	Width	ins Preclean J			Date Cleaned		
Material	Other		Join	t length 40.0	Ft To	tal len	gth Ft	Length	Surveyed 42	8.5 Ft
Lining			Ye	ar laid	Year r	ehabil	litated	Weather	Dry	
Purpose	Routine Asse	ssment		Cat					Pressure	
Additional	info						Structural	O & M	Constructi	ional
Location	Yard						Miscellaneous			
Project	WES22402					•	Work	Order		
Northing			Easting				Elevation			
Coordinate System			GPS Accuracy							
										$\overline{}$

Count Video	CD	Code		ln1	ln2	%	Jnt	Fr	То	ImRef	Remarks
0.0		ST	Start of Survey								
0.0		AEP	End of Pipe								C202
0.0		MWL	Water Level			0					
87.7	S01	MCU	Camera Underwater								
88.7		LU	Alignment Up			25					
89.5		TF	Tap Factory	6.000				03			
91.7		TF	Tap Factory	6.000	l			09			
95.0	F01	MCU	Camera Underwater								
428.5		MSA	Abandoned Survey								CAMERA CANNOT CONTINUE*

428.5 Ft Total Length Surveyed

Scores

Notes

Structural:	Pipe Rating 0	Pipe Ratings Index 0	Quick Rating 0000
O&M:	Pipe Rating 8	Pipe Ratings Index 4	Quick Rating 4200
Overall	Pipe Rating 8	Pipe Ratings Index 4	Quick Rating 4200

^{*}Note: At 428.5' camera cannot continue due to weld at joint / Approximately 272' not televised

CD column indicates continuous defects:

S indicates start of defect

F indicates finish of defect

LEACHATE LINE JETTING

3600 Kewaunee Rd. Green Bay, WI 54311 920-863-3663

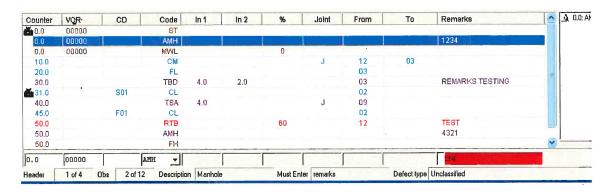
CLEANING REPORT

DATE: 10/3/2022

OWNER: Wisconsin Public Service

LOCATION: Weston disposal Site #3

CONTRACTOR: Riverview Construction


LEACHATE: ☑ STORM: □

SECTION	PIPE SIZE	PIPE LENGTH	DISTANCE JETTED	Easer Maci use	nine d?	REMARKS
	(inch)	(feet)	(feet)	Υ	N	
C202	6	1,192	600		Х	Hose advances very slowly
C105	6		398		Х	Hose stops
C201	6	1,188	500		Χ	Hose advances very slowly
C101	6		622		Х	Hose stops
C102	6		600		Х	Hose advances slowly
C103	6		400		Х	Hose stops
C104	6		400	_	Х	Hose stops
C106	6		570		х	Hose advances slowly
C107	6		500		Х	Hose advances slowly

APPENDIX

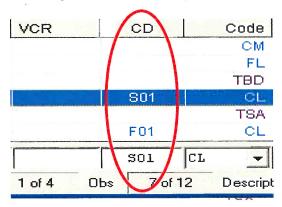
Understanding PipeLogix's PACP Observation Information

Example of a common Observation Screen in PipeLogix program

The Counter Column

The **Counter column** displays the distance from the Manhole wall to the Observation/ Defect in tenths of a foot.

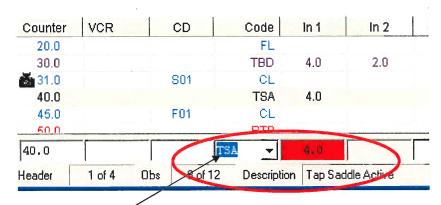
The Video Column


The **Video column** is used if you wish to have Video counter information in the survey.

Counter	VOR	CD	Code
0.0	00000		ST
0.0	00000		AMH
0.0	00000		MVVL
10.0			CM
20.0			FL
30.0	****		TBD
0.0	00000		AMH 🔻
Header	of 4	Obs 2 of 1:	2 Descript

Page 1

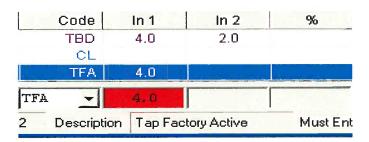
The CD Column or Continuous Defect Column


The **CD column** is used to describe Defects that are at least 3 feet in length or defects that occur at regular intervals along the sewer (3 out of 4 joints).

This is an important distinction when scoring a pipe's condition in that the larger/longer the defect the worse the pipe is going to score.

The Code Column

The **Code column** is used to enter in defect/observation Codes into the database.


PipeLogix combines the code Group/Descriptor and the Modifier into one column.

An example of this is the TSA code: the Group is T =tap Descriptor is S=saddle and Modifier A=active.

The In 1 Column

The **In 1 column** is mainly used with codes that require dimensions to be indicated.

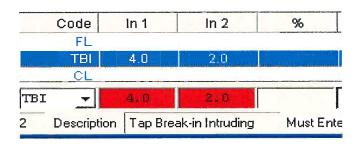
The most common of these are codes dealing with taps.

As in the example above, TFA code required the operator to enter in the In 1 column the size of the tap in inches (This is true for all Tap codes).

The other codes that use the In 1 column are:

V=Vermin code is used to count the number of vermin

MJL=Miscellaneous Joint Length Change is used to indicate the change in length joint in feet

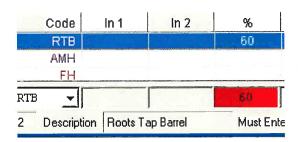

MSC=Miscellaneous Size/Shape Change is used to indicate the change in pipe size in inches

ATC=Access Tee Connection is used to indicate the change in size of a Tee connection in inches

DI= Dropped Invert is used to indicate the amount of drop in the invert in inches

The In 2 Column

The **In 2 column** is the least used column. It is only used with an intrusive junction/ connection code or the dimension of a sewer when it is non-circular.


In the example above **TBI** (**Tap Break-in Intruding**) code is requiring the operator to enter in the **In 2 column** the amount of the intrusion by inch.

The other codes that require the use of the In 2 column are:

TSI = Tap Saddle Intruding which requires the amount of intrusion by inch

The % or Value Column

The % column is used mainly to indicate the amount of blockage in the pipe.

In the example above **RTB=Root Tap Barrel** is requiring the operator to enter in the percentage of the pipe that is being blocked.

The other codes that use the % or Value Column are:

XP = **Collapse Pipe** indicates the amount of collapse

XB = **Collapses Brick Sewer** indicates the amount of collapse

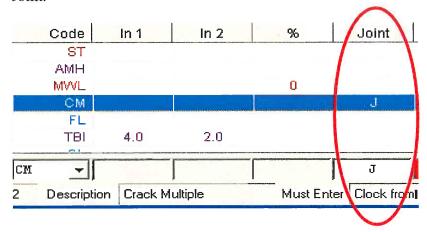
DA (all) = Deposits Attached Codes indicate the amount of blockage in the pipe

DS (all) = Deposits Settled Codes indicate the amount of blockage in the pipe

IS (all) = Intruding Sealing Material Codes indicate the amount of blockage in the pipe

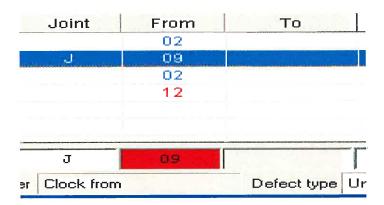
L (all) = Line Codes indicate the amount of direction change in the pipe

O (all) = Obstacles/Obstruction Codes indicate the amount of blockage in the pipe

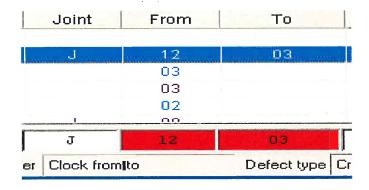

RT (all) =Roots Tap Codes indicate the amount of blockage in the pipe

RM (all) = Roots Medium indicate the amount of blockage in the pipe

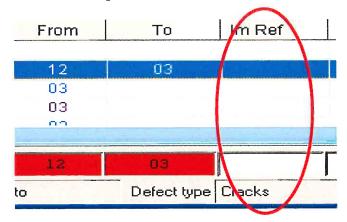
RB (all) =Roots Ball indicate the amount the blockage in the pipe


The J or Joint Column

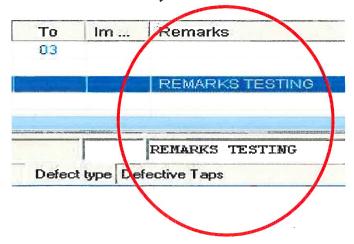
The **J column** is used when a defect/observation is located within 3 feet of a Joint.


The From or At Column

The **From column** is used to enter the clock position of a defect. Most defects/observations will have a **From** or **At** clock position.


The To Column

The **To column** is used if two clock references are required, the second clock reference being the ending position.


The Im Ref Column

The **Im Ref column** is used when taking pictures of Defects/Observations to indicate that a picture has been taken.

The Remarks Column

The Remarks column is used to record details regarding the observation/defects that are not described by codes in other columns.

Page 6